B R R R SREmemes

Abstract Model of MSG

First Phase of an Experiment in Software Development

058039

T i
2‘ Glenn H. Holloway
William R. Bush
>= George H. Meal
O eorg ealy
()
/. (i) i
¢ Ll 1:
s = ?
b = e
ma %
L gl |

DDC

August 1978

AUG 24 1978 i

Sponsored by
Defense Advanced Research Projects Agency (DoD)

ARPA Order No. 3079.3

Monitored by Naval Electronic Systens Command

4 Under Contract #N00039-78-G-0020

DISTRIBUTION ST. A

Approved for -
E public l’elemq U
Distribution Unlimited ;

-
-

M o

unclassified

SECURITY CLASSIFICATION OF THIS PAGE (HWhen Data Entered)
' READ INSTRUCTIONS

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

1. REPCRT NUMBER 2. GOVT ACCESSION NO.J 3. RECIPIENT'S CATALQG NUMBER

,\ TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

Abstract Model of MSG: First Phase of an technlcal veport

Experiment in Software Development > P 6. PERFORMING ORG. REPORT NUMBER

7, AUTHOR(s)

lenn a.\iaonoway, William R. |Bush,-meté
George H.|Mealy

0. CONTRACT OR GRANT NUMBZR(s)

N00039-78-G~0020 e

9. PERFORMING ORGANIZATION NAME AND ADDRESS
Center for Research in Computing Technology
Harvard University y///
Cambridge, Massachusetts 02138

11. CONTROLLING OFFICE NAME AND ADDRESS cPORT DALE

11] August=a978 /
W oo

10. PROGRAM !LEM!NT. PROJECT TASK
A & WORK UNIT NUMBERS

Department of the Navy

Naval Electronics System Command
D C__ 20360 ___163

Washineton
To MONITORING ACENCY NAWE & ADORESS(i! different from Controlling Office) | V5. SECURITY CLASS. (of this report)

same as above

152, DECL ASSIFICATION/ DOWNGRADING

Q)Ttt,k ey m\‘“ / Wi

i 3 A !
Dy |- | |

O —

17. DISTRIBUTION STATEMENT (of the abstract entorsd In Block 20, If dilferent from Report)

unlimited

18. SUAPLEMENTARY NOTES B —

\SINoBY59-19-6- 40265 ,4& PA Ovd er- 34)‘_73_4

13. XKEY WORDS (Continus on reverse slds If necessary and identily by dlock numnber)

software development software maintenance
program families ™ stepwise refinement
National Software Works MSG

. ABSTRACT (Continus on raverns alds If necsssary and 1dentlty by Slock numdsr)

"This report describes the first phase of an experiment designed to demonstrate
techniques for software development and evolution. The experiment involves
the production of a family of functionally similar systems on dissimilar
host computers with markedly different operating systems. The basic technique
being used is machine assisted stepwise refinement from an abstract model
program that embodies the dosircd characteristic of the fanu]) momb(r _;;/)(Y

i im0 !

Foou . ‘ L
Do J:,‘ 23 V473 EDITION OF 1 NOYV 5515 0as0LETS unclassified
S/N 0102-014-6601 |

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entersd)

PU——,

VI P p—

\ unclassified
LLULURITY CLASSIFICATION OF THIS PAGE(iVhen Data Entered)

.

y
without overconstraining the individual implementations.

The example system being developed in this experiment is MSG, the interprocess
communication component of the National Software Works (NSW). MSG has
already been specified and implemented by conventional means for several host
computers. Our experiment consists of: production of an abstract model
of the MSG family, realization of MSG on two actual hosts, to study the
incremental costs of producing new instances by our techniques from a suitable
model, and evolution of the MSG family in accord with actual changes to the
MSG specification as they arise, to evaluate the efficiencies of maintaining
families in unison. : i
\ !

.
e e —— v A .o he

e g .

s i

ce e meay v

unclassified

SECURITY CLASSIFICATION OF THIS PAGE(WNen Dats Entered)

Abstract Model of MSG 1 ’

Summary

This report describes the first phase of an experiment

designed to demonstrate techniques for software development

and evolution. The experiment involves the production of a

family of functionally similar systems on dissimilar host

computers with markedly different operating systems. The

basic technique beinz wused is machine assisted stepwise

, refinement from an abstract model program that embodies the

! desired characteristic of the family members without
overconstraining the individual implementations.

‘ The example system being developed in this experiment
i is MSG, the interprocess communication component of the
! National Software Works (NSW). MSG has already been
i specified and implemented by conventional means for several
B | host computers. OQOur experiment consists of: production of
] an abstract model of the MSG family, realization of MSG on
¥ two actual hosts, to study the incremental costs of
producing new instances by our techniques from a suitable
model, and evolution of the MSG family in accord with actual
changes to the MSG specification as they arise, to evaluate
the efficiencies of maintzining families in unison,.

The first phase of the project, creation of a
preliminary MSG model, is complete. This report is a guide
to readers of the model. Section 1 gives an introduction to
the experim=at and to MSG. Section 2 is an overview of the
model, discussing its internal structure and external
interfaces. Communication betwean MSG and the 1local
processes it serves is described, as are the sequencing and

| bufferinzg algorithms by which 1interprocess messazes are
{ delivered. The method used to encapsulate the detailed
1 representations of network protocol items is presented, ani
1 the schemes for <cleaningz up M3G's data base when
transactions time out or are rescinded are also discussed.
Finally, section 3 of the report provides a guide ¢to the

languaze in which the model is written,

The text of the model appears in the appandix.

‘ ABCESTION for v p)
y s . v Lertiul 73

o
{ ure

Abstract Model of MSG 2

1. Introduction

An experiment in program development and evolution is
under way at Harvard's Center for Research in Computing
Technology. Its purpose is to test techniques ihtendgd to
reduce the cost and enhance the reliability of software

maintenance.

The experiment involves the implementation of a system
of moderate size and complexity that has been desizned for
the Defense Department and has been implemented for several
~host computers by conventional means. The example system is
thus actually al family of programs sharingz a common
specification but having a number of markedly different

implementations.

Such families occur quite frequently. Operating
systems that must provide similar environments on different
physical configurations, communications processors that must
observe a common protocol while running on a variety of host
machines, and compilers of the same programming language for
different target computers can all be regarded as comprising

families.

Qur experiment deals particularly with the creaticn and
maintenance of such program families, although the
techniques we employ are effective in developing
single-instance systems as well, Our aim is to show that by

concentrating from the outset on the development of a family

I

Abstract Model of MSG 3

of programs, designers can dramatically reduce the costs of
producing a new member of the family and of maintaining the

family in unison.

1.1 The Example System: MSG

The specific program we are experimenting with, called
MSG, 1is the interprocess communications handler for the
National Software Works (NSW). The NSW is a distributed
operating system now being developed for the ARPA network.
It provides users of the ARPANET with a wuniform means of
accessing the tools and data bases of the network without
having to know where they reside or how to 'deal with the

idiosyncracies of individual tool-bearing hosts.

An instance of MSG runs on each host participating in
the NSW. In effect, it extends the local host operating
system. It is responsible for starting and manazing the
processes which implement various NSW functions, such as the
Works Manager, which assigns tasks to tool bearing hosts,
the File Package, which 1implements a distributed filing
system, the Front End, which provides users with a uniform
interface to the NSW, and the Foremen, which supervise the

various tools.

MSG routes messages between NSW processes, and, when
necessary, establishes direct network connections between

them. Messages may be either generically or specifically

addressed. A generically addressed message causes MSG to

Abstract Model of MSG y

seek or create a process of a particular class (e.g., Works
Manager). Specifically addressed messages are routed by MSG
to a precisely designated destination process. They are
normally used after communication has been established using

a generically addressed message.

MSG provides facilities for ordering messages and
synchronizing message streams with respect to unusual events
or exceptions. Normally, MSG does not guarantee that
messages will be delivered in the order submitted. The

sending process, however, may specify that a subset of its

' messages to a given destination must be delivered in the

sequence sent, and that such sequenced messages must not be

sent if earlier members of the sequance were not deliverable

for some reason.

To permit interprocess signalling of excer .ionsal
events, MSG provides for high priority transmission of short
communications, called alarus. Alarams are handled
independently of any message traffic between the sending and
receiving processes, They can be wused to facilitate

resynchronization of a message interchange.

To aid synchronization of messagzes with alarms, MSG

permits certain messazes to be stream-marked. A

stream-marked message will be delivered after any prior
messages to the same destination and before all those sent

subsequeantly.

Abstract Model of MSG 5

Instances of MSG on different hosts communicate usingz a
protocol that provides for the establishment and termination
of MSG-to-MSG network connections and for all three types of
communication supported by MSG: messages, alarms, and
direct connections between processes. The messaze pr6t0c01
includes items that facilitate flow control so that the
burden of buffering messages can be distributed between

sender and receiver when traffic is heavy.

Further details on the functions performed by MSG and
on the MSG-to-MSG protocol can be found in the MSG Design
' Specification ([Spec]. A familiarity with the specification

will be assumed in section 2 of this report.

1.2 Method of Development and Evolution

Our hypothesis is that program maintenance can be made
less costly and more dependable if system designers view
their task as the desizn of a program family whose members
are derived from a common ancestor, or root, which we call

the abstract model for the family. Use of the term

"abstract” is not intended to imply that the model is a
formal mathematical object. Rather, it is a program written
with sufficient generality that members of the family can be

obtained by specialization of it.

Concrete program instances are derived by a sequence of

refinamants from the abstract model. Each refinz2ment

encapsulates related design decisions that distinguish a

Abstract Model of MSG 6

class of concrete instances. A refinement may give
definition to a procedure, a data structure, or a control
pattern left unbound at the abstract level, or it may modify
or augment such constructs. The program family thus forms a
tree, with the abstract model at the root, the concrete
instances at the 1leaves, particular refinements 1labeling
branches, and interior nodes that represent classés of

instances sharing a common set of refinement choices.

We have developed, and are constantly improving, tools
that aid developers by maintaining the family tree in a data
base and by mechanizing the task of applying refinement
sequences. Using these tools, a new member of an existing
family is less expensive to produce than one developed
separately because the basic model and most of the
refinements that yield the new version will be shared with
existing instances. Moreover, modifications to broad
subfamilies can be effected in uniscn, by applying altered
refinements that reflect revised design decisions and simply

reapplying those not affected.

Our techniqu2s are not restricted to programs like MS3G
that must exist in many functionally similar but internally
disparate versions at the same time. The history of every
evolving program is a series of closely related versions,
which themselves compris=s a family. Thes clear isolation of

the 1individual design decisions leading to a particular

instance presents the maintainer with a picture of its

T T

g o udie

Ghanadle s Sme. Loaas -l Bl

.

—— T

Abstract Model of MSG T

structure that enables him to understand the ramifications
of a particular modification better than can a single-level

representation of a system.

This approach is particularly beneficial if the
software engineer charged with modifying or expanding a
family system has not been involved in its prior
development. Instzad of confronting a finished product
togethar with some documentation about what it does, he has
access to information about how it was constructed, why
particular decisions were taken, and what the effects of
changing them would be. He has tools that permit him to
take the program apart and reconstruct it eésily, to

generate a new version or to revert quickly to an old one.

In short, with these techniques, the roles of initial
developer and maintainer tend to merge. The maintainer can
afford to leave the system in as clean and well-structured a
state as 1its originators, even after several stages of
evolution., By contrast, systems developed by conventional
methods often reach an overmaintained state after a few
successive versions have been produced. After this point,
the quality of new versions deteriorates instead of

improving [Belady].

Another aspect of software construction that fits
naturally into the family maintenance framework is the use

of library procedures and data abstractions. An implementer

often neads to take a general algorithm or data definition,

Abstract Model of MSG 8

with known properties of correctness and performance, and
specialize it to a particular task, with particular physical
data representations. Sometimes many distinct realizations
of the same abstract notion will be used in a3 sinzle system.
The specialized versions of such 1library modules‘ also
constitute a family whose members can be produced and

maintained using the tools we are developing.

1.3 Reasons for Choosing MSG

The MSG paradigm is a good basis for our experiment
because it is a family of communicating programs and because
interesting maintenance requirements, drawn from experience

with the NSW, can be anticipated in the near future.

Instances of MSG should appear to function identically
in spite of highly disparate host systems. Since they must
communicate effectively, the behavior of each must be
closely coupled to that of the others. When one MSG
instance is altered in an externally observable way, all

should be altered in unison.

The MSG-to-M3G protocol is relatively simple, but the
operating environment is imperfect. Hosts may die, or pause
indefinitely; processes may also die, or they may chan3ze
their minds; interhost connections may drop. These
possibilities introduce complexities 1in interhost MSG
communication which are virtually impossible to capture in a

nonprocedural English, item-by-item protocol specification.

Abstract Model of MSG 9

Such a specification, 1indeed, 1is aimed at minimizing the
description of external behavior in order to give maximum
flexibility to implementers and maintainers of individual
instances. Unfortunately, the use of imprecise: interface
specifications when interfaces are potentially complex can
lead to inefficient, defensive strategies, or worse, to

inconsistent interpretations by different implementers.

Our view 1is that each instance of MSG should be
constructed as if it were ¢to communicate with an exact
replica of itself. The abstract model of MSG thus provides
a precise description of the behavior of any instance in any

circumstance, and this knowledge can be wused in realizing

any concrete version. There is no harm in this mutual
knowledge because the family members are maintained in
unison. Useful flexibility, that needed to accomodate
differences in host facilities and resources, results from

the abstractness of the model.

1.4 Pnase One: The Preliminary Abstract Model

During the first phase of the project, we have
constructed an abstract model of MSG. In later phases, we
will refine the model to two concrete instances on
dissimilar target machines, the DEC PDP-10 and PDP-11,

running the TENEX and UNIX operatinzg systems, respectively.

L o loimicn, e

Abstract Model of MSG 10

The remzining sections of this report are intended as a
guide to readers of the model, which appears in the

appendix. Section 2 provides an overview of the model

.itself. It assumes some familiarity with the MSG Design

Specification. Section 3 describes the modelling 1language

and highlights some of the features we use to aid both the

readability and refinability of abstract algorithms.

Abstract Model of MSG 1

2. Guide to the MSG Model

2.1 An Overview

MSG instances on each of the participatinz hosts 1link
the NSW together by carrying out communication between the
processes that comprise it, as depicted in figure 1. The
double shafted arrows in this picture represent channels for
interprocess communication. Those 1linking processes on

| different hosts will be implemented using natwork
connections. Those between processes on the same host will
be realized using whatever interprocess communication (IPC)

A " facility is most suitable on that host. Some hosts, such as
E | CCN (360/91), offer an IPC facility that closely resembdles
: the channel abstraction we have used in modelling Msﬁ. On
others, such as TENEX, direct communication via shared

memory may be Dbest. We neither assume nor prohibit

hierarchical relationships between MSG and the processes it

‘ serves. On som2 hosts, it may be wuseful to orgzganize
processes hierarchically in order to achieve the most

: . effective IPC.

In our model, each MSG 1instance 1is structured as a
collection of paths serving specialized functions and

sharing a common data base. Paths, 1like processes, are

1 concurrently executable control units. We distinguish
"path" from "process" to emphasize that paths internal to
MSG may or may not be implemented wusing the process]

management facilities of the host operating system. For]

o,

— e e et g e e e

Abstract Model of MSG 11A

‘Direct Connection

. =1 \ 4 Network !
s / Servers

l
Local / l [
Process l | |
rosul Servers 1
Processes [LOCAL] ‘ O I Remote
[PROCESS] Timer wce | = g
[CANCEL]

O Auth
Driver

[DRIVER] e

|
|
|
|
|
|
|
|
l
|

Local MSG

Figure 1. MSG Internal Structure and Extarnal Interfaces

Q

Abstract Model of MSG 12

each transaction that MSG processes, that 1is, for each
message and alarm sent or received and for each direct
connection established, the data base holds a record

describing the state of the transaction.

The modules that comprise the MSG model are: LOCAL,
which defines the interface between MSG and local processes,
REMOTE, which contains the network interface, QUEUE, which
includes routing algorithms and data base management
routines, CANCEL, which expunges transactions that, for one
reason or another, cannot be completed, and DRIVER, which is
responsible for initialization of MSG and of local
processes. Another module, GLOBAL, <collects the data
definitions for the model. Finally, PROCESS is a small
module that contains the routines that must be embedded in

processes for use in initiating MSG primitive operations.

Within MSG there is a server pair for each user

process. A server pair is a pair of paths whose separate
functions correspond roughly, though not exactly, to input
and output. In the case of a process server, the two halves
correspond to the two phases of many MSG primitive
operations. Tne first is the call pnase, in which MSG
accepts and validates arguments. If the call is acceptabdle,
the process is allowed to continue execution while MSG
proceeds witn its request. When the transaction is

complete, the second, or elivery phase of the primitive

operation occurs, in wnich the disposition of the

S

Abstract Model of MSG 13

transaction is transmitted to the process, along with any
incoming information, such as message text, an alarm code,
or a network connection designator. Primitive operations
that occur in two stages this way are said to create pending

events for later completion,

The model does not fix the number of wuser processes
assigned to a given server pair. There may be one pair per
process, one per generic class, one for all processes, or
some other configuration if convenient. If there are
multiple server pairs, each is identical in operation to the

next. They share the procedures given in module LOCAL.

Symmetrical with the set of user process servers is

another set of server pairs called network servers. A

network server implemants the inter-MSG protocol by
formattinz and transmitting protocol items from the local
MSG to instances of MSG on other hosts, and receiving items
from other hosts and translating them into internal MSG
records. In a given realization of MSG, each networX pair
may handle a single remote host or several of them. Like
the local process servers, each network server is identical
with the next. All share the algorithms given in module

REMOTE of the model.

The paths labelled ICP and Auth in figure 1 are also
defined 1in the modulzs REMOTE. They take part 1in the
establishment of connections with remote hosts. ICP (which

stands for Initial Connection Protocol) is activated when

VT T I—"

Abstract Model of MSG 14

another host initiates a connection with the 1local MSG.
Auth is used in authenticating the identity of the local MSG
when it has initiated a connection with an MSG instance on

another host.

Timer is MSG's clock-watching path. For most of the
states that a transaction can be in, it is desirable that a
limit be enforced on the amount of time allowed ¢to elapse
without some progress being made. Time limits are specified
when a user process issues a primitive call, and they are
also set in certain states by MSG in order to implement its
flow control policies. The Timer path, defined 1in the
module CANCEL, manages a queue of transactions‘sorted in
order of their expiration times. It uses a real time clock
interrupt to zenerate timeout signals, and it responds to
them by aborting expired transactions and expunging their
records from the system. The intent is that, given a long
enough quiescent period with no incoming or outgoing
transmissions, MSG will tend to return to its initial state.
(There are exceptions to this rule, however. Direct
connections to other hosts, for instance, do not expire

whether or not they are used.)

The remaining internal path shown in figure 1, called
Driver, is the first to be executed when an MSG instance is
executed. It performs initialization tasiks, including the
creation of local processes and server paths. In some

realizations of M3G, the Driver may be a superior of the

e e

Abstract Model of MSG 15

paths comprising MSG, and indeed may act as a scheduler for
them. These details are omitted from the abstract DRIVER
module, however, since they depend critically on the nature

of the underlying host's facilities.

The single-shafted akrows in figure 1 denote direct
communication among internal ﬁSG processes via a shared data
base containing records for each transaction known to the
system at any moment. The routines that manage this data
base are contained in the MSG modules called QUEUE and
CANCEL. The data base manager is not a separate path.
Rather, the routines in QUEUE and CANCEL are called by the
internal paths of MSG to access and alter the data base in
response to particular stimuli such as the arrival of a
protocol item on the network, the -execution of a user
primitive, or the expiration of a time 1limit for some
transaction. QUEUE is so namad because its primary task is
to enqueue items for output over the network or for delivery
to 1local processes. CANCEL contains routines to discard

incomplete transactions when they must be aborted.

The data base is composed mainly of transaction records
defined by the data types MessBlock, AlarmBlock, and
ConnBlock, one for each of the three modes of communication
supported by MSG. These types are defined in the module
GLOBAL. To emphasize the fact that these records are shared
among multiple paths and are accessible via several routes

at once in the data base, the model wusually manipulates

L Lot

Abstract Model of MSG 16

"handles" on records. The data type MessHandle, for
instance, has the abstract behavior of a pointer to a
MessBlock (though it need not be realized as a pointer in
concrete versions of MSG). Collections of message records

are expressed as sets or queues of MessHandles.

The anchor points from which most records in the data
base are accessed are the data structures ProcessTable,
ServerTable, HostS, TransactionTable, GenericTable, and
TimerQ. ProcessTable maps process names (and, in

particular, the process instance identifiers within process

" names) to ProcessHandles. Every local process managed by

MSG has a ProcessHandle in ProcessTable. The data
accessible through a ProcessHandle (sce module GLCBAL for
all global data types) give the state of MSG's interaction
with the process, including the pending primitives waiting
to be completed, incoming messages and alarms waiting for

delivery, and direct network connections to other processes.

ServerTable contains a record for each of the process
server and network server pairs internal to MSG. This is,
in general, a dynamically varying collection, since there
might be a server pair for each active user process and
remote host connection. An important component of the
record for each server is 1its delivery queue, which is
filled with transaction records produced by other paths and

emptied by the server as the items are attended to. The

delivery qu2ue »f a local process server holds the pending

Abstract Model of MSG 17

events ready to be completed. That of a network server

contains protocol items awaiting transmission.

HostS includes an entry for each remote host with which
MSG has established contact. Among other fields, the remote
host entry holds the incarnation number of the MSG 1instance
running on the remote host, and a set of ChannelHandles that
describe the connections currently open to that host for use

by MSG.

Since some transactions handled by MSG involve the
exchange of several protocol items, it is convenient to have
each MS3SG instance assign a wunique identifier- to the
transactions it is involved in. TransactionTable is used in
the assignment of these identifiers, which are designed to
repeat very infrequently. It also gives quick access to the
data base record for any transaction, given its transaction

identifier as a key.

GenericTable has an entry for each generic process
class, such as Works Manager or File Packagze. It contains
records needed to start a new process of a given class, and
it indicates which NS4 hosts support each generic class, so
that an outgoing generically addressed message <can be
routed. GenaricTable also contains holding places for
incoming zeneric messages when it is not possible to assign

them immediately to specific processes of the proper class.

Abstract Model of MSG 18

TimerQ is the queue of transactions being timed Dby

Timer, sorted in order of expiration time.

Of course, with multiple parallel paths accessing and
altering shared records, it is nescessary to employ a record
locking mechanism to guarantee orderly s=quential access.
This mechanism is 1invoked in the model through the
primitives Seize, TestSeize, and Release. Seize blocks the
calling process until exclusive access can be granted to the
caller. Release wunlocks a previously seized resource.
TestSeize attempts to seize a resource, but does not block
if it is unsuccessful. Instead, it returns a Boolean value

indicating success or failure.

Although these primitives are used in the MSG model, so
that it can be <checked for er.ors such as deadlock, the
implementations of Seize, TestSeize, and Release are
deliberately 1left wunspecified. In some purely sequential
realizations, there will be no need for 1locks and these

primitives can be refined away.

Storage management of records presents a similar
situation. Tae routine Allocate 1is wused to eater naw
records in the data base, and Free is used to indicate that
one reference to a record has been deleted. However, the
record may only be reclaimed when all such references have
been eliminated. If Free cannot safely reclaim storaze, it

simply performs a Release. The detailed mechanisms for

easuring that storage can be reclaimed safely are deferred

Abstract Model of MSG 19

to a lower level of refinement.

2.2 The Interface Betwean MSG and Local Processes

The modules PROCESS and LOCAL model the interface
between MSG and the 1local processes it serves. PROCESS
contains routines to be 1loaded with user processes and
called by them to initiate MSG primitives. These routines
are quite simple; they merely transmit arguments to MSG and
guide results into place. LOCAL contains the procedures and
tables Qsed by each pair of server paths which implement the

primitive operations.

2.2.1 Communication Between MSG and Local Processes

In the abstract MSG model, processes communicate with
MSG by way of signals and channels. The particular
mechanisms used were chosen to make the model as simple as
possible within the constraint that they must be realizable

in a variety of host systenms.

A signal 1is a dataless communication between two
processes used to herald events and achieve synchronization.
In MSG, signal identifiers of type SignalType are wused to
distinguish among the several signals with different
meanings that may be in uSe between two processes. The
expression SIGNAL(<signal identifier>) sends the desiznated
signal. WAIT (<signal set>) blocks the <calling process

until a member of the designated set of signals is received.

Abstract Model of MSG 20

It returns the identifier of that signal as its result.

A channel is opened between two processes when each
calls CHOPEN with the same channel identifier and compatible
channel descriptors. SEND(<data list>, <channel>) 1is wused
to send a group of data over a channel. SEND always blocks
the calling process until the data have been received.
RECEIVE(<Kvariable list>, <channel>, <block flag>) fills the
elements of a list of variables by reading from a channel.
RECEIVE's third argumeant 1is a Boolean which, when TRUZ,
causes the calling process to block until the whole variable
list has been read. If this argument is FALSE, the caller
may proceed while the data are being read. Presuiably, in
the 1latter case, the caller has another way of knowing when
the transmission is complete. For example, the sender may

use a signal to alert the receiver.

A channel may be closed from either side wusing the
CHCLOSE operator, but it will be closed only after data in

the channel have been received.

CHOPEN, CHCLOSE, SEND, and RECEIVE are specified in

module GLOBAL.

PROCESS and LOCAL use a few notational -extensions for
dealing with channels. The expression <X1, ..., Xk> ={> CH
is equivalent to SEND(<X1, ..., Xk>, CH), which sends the
successive values X1 thouzh Xk over channel CH. Similarly,

<V1, ..., Vk> <= CH stands for a non-blocking RECEIVE call:

Abstract Model of MSG 21

RECEIVE(<V1, ..., Vk>, CH, FALSE)

while <V1, ..., Vk> <ii= CH staﬂds for a blocking RECEIVE:
RECEIVE(<V1, ..., Vk>, CH, TRUE).

Also, <F1, ..., Fn>(M) is equivalent to <M.F1, ..., M.Fn>.

‘

2.2.2 Primitive Routines Within User Processes

Module PROCESS contains a routine definition for each
primitive defined in the MSG specificatioﬁ. Each consists
of a call on one general routine, PCall. PCall has four
arguments: Op 1identifies the particular primitive being
invoked; SendList is the list of data that must be sent to
MSG to allow it to execute the operation; Receivelist is a
list of variables to be filled by the time the primitive
completes; and CreatesPendingEvent 1is bound to TRUE for
those primitives thgt occur in two stages, i.e., that create
pending evants. In addition, PCall sets the variable
PendingEventID, which 1is an output parameter of every

pending event creating primitive routine.

As an example, th2 body of the ReceiveSpecificMessage
primitive is:
PCall("Rz2ceiveSpecificMessaze",
<Signal, Timer>,
<Text, SourceProcess, Handlingz, Disposition>,
TRUE)

Here Signal represents the signal identifier chosen by the

calling process for MSG's use in signalling completion of

the Receive. By convention, 2 special value of SignalType
' o

can be wused if the <caller wishes the primitive to block

Abstract Model of MSG 22

until completion iastead of returning while the transaction
proceeds. Timer 1is the maximum delay the calling process
will allow before satisfaction of the Receive request.
Text, SourceProcess, Handling, and Disposition are the
output variables into which the results of the Receive are
to be placed. Text will hold tne actual messaze;
SourceProcess will be the name of the sending process,
Handling will indicate what special handling the message may
have, and Disposition is a code that indicates whether the

operation succeeded or failed, and if it failed, then why.

Every process has a channel, called MSGChannel,
permanently open to MSG. It is used for those brimitives
that do not create pending events and for the call phase of
those that do. PCall uses MSGChannel to send the identifier
Op and the SendList parameters to MSG, and then waits for
its reply on the same channel. MSG answers with a
disposition code. If this code indicates some error, PCall
terminates the primitive by returning the error code. If
MSG's reply is normal, and the primitive does not «create a
pendingz event, then the rest of the data for the Receivelist
come over MSGChannel, and the primitive returns an

indication of normal completion.

For pending event primitives that get past initial
validation, MSG sends back an identifier which will be
uniquely associated ith the current transaction. PCall

assigns this identifier to PendingEventiD. It can be uszd

s

Abstract Model of MSG 23

by the calling process to rescind a pending event before it

has completed.

PendingEventID is also used to open a new channel to be
used exclusively for the completion of the current
primitive. Then PCall issues a RECEIVE for the Receivelist.
Depending on whether the caller has asked to block until
completion or to be allowed to run, PCall will block or
return immediately. 1In the latter case, MSG uses tne given
sigznal to alert the user process that the primitive has

completed.

2.2.3 The Local Process Servers

The other side of this interface 1is -encoded 1in the
server pair assigned to the wuser process. The main
procedures for the pair of paths comprising the server are
UserCallServer and UserDeliveryServer. These in turn select
procedures for handling the individual MSG primitives. All

of these procedures are contained in module LOCAL.

The handling of a SendSpecificMessage is typical of how
the server pair deals with pending event primitives,
UserCallServer monitors the permansnt channels to tha
processes it 1is responsible for. When it receives an
operation code over on2 of these channels, it dispatches to
the appropriate handler, as given by OpTable. The handler
is given the OpCode (since the same handler may implement

more than one primitive), the channel to the local process,

Abstract Model of MSG 24

and a ProcessHandle for the process. In the case of a

SendSpecificMessage, UserCallServer calls StartSendMessage.

StartSendMessage receives the parameters sent by the
user process and validates them. If it finds an error it
aborts the primitive right away, sending an error code to
the process. Otherwise, it indicates that the call phase
will complete normally by sending the code "Incomplete". It
i assigns a transaction identifier and sends it to the user
process, and it uses this identifier to open a new channel
for completion of the event. Finally, a transaction record
is created for the message and is passed to EnQOutputMess,

l one of the routines exported by QUEZUE.

N Eventually, the transaction will be placed in the
delivery queue of the server and will be found there by the
UserDeliveryServer. This path uses the original operation
code to dispatch to a handler for the delivery phase. In
the case of SendSpecificMessage, the delivery handler is
EndSendMessaze. EndSendMessage finds the channsl openad for
this transaction and sends the disposition c¢ode (the only
output value in this case) to the process. It then uses the

signal supplied by the process to signal completion of the

event, and it frees th2 transaction record for the message.

PULBR LA aaw A SIS S S ——— et S A

Abstract Model of MSG 25

2.3 Message Routing and Data Base Management

As mentioned in the overview, the modules QUEUE and
CANCEL contain routines that respond to events which drive
MSG: execution of primitives, receipt of protocol items,
timeout of events, and so on. In particular, QUEUE embodies
most of MSG's routing and buffering algorithms: finding a
specific destination for generically addressed messages,
deciding whether to buffer or reject messages that cannot be
delivered immediately, sequencing the transmission of
"special handling" messages, and the 1like. This section
summarizes QUEUE's algorithms for each class of
communication supported by MSG. The next section discusses

the CANCEL module.

2.3.1 Message Handling

2.3.1.1 Dutgoing Messages

Figure 2 is a state transition diagram for an outzgocing
message. The 1initial state is labelled "No MESS pending".
_Arcs representing transitions have 1labels of the form
Stimulus/Response. Here "stimulus" describes thes event
giving rise to the transition, and "response" dJdescribes
MSG's action (if any) wupon entering the new state.
"SendMess/send MESS" (transition 2), for example, denotes
the execution of a SendGenericMessaze or SandSpscificMessaze
primitive by a local process. MSG's response is to transmit

a MESS protocol item to the destination and place the

Abstract Model of MSG 25A r

Gt BEC i EVE R

THIS PAGE IS BEST QUALITY PRACTICABLE
FBDICDPYFURNISHEDTODDQ P

No MESS
pending

Awaiting
XMIT

Awaiting

MESS-OK | __ =
<

1: MESS-0K/ --
MESS-REJ/ --
MESS-HOLD/send MESS-CANCEL
SendMess/send MESS
: MESS-REJ/abort Senddess
Buffer needed or Timeout/send MESS-CANCEL,

b abort SendMess
4: MESS-OK/complete SendMess

MESS-REJ/atort SendMess

MESS-40LD/send MES3-CANCEL,

abort SandMess

Timeout/abort SendMess
5: MESS-HOLD/send HOLD-DK
6: XMIT/retransmit MESS3 |

w N

Figure 2. State Transitions for Outzgoing Messages

Abstract Model of MSG 26

transaction in the state "Awaiting MESS-0OK". At the same

time, a MessHandle representing the transaction is placed in

the OutputMessQ associated with the the sending process.

The response to a MESS item can be acceptance (MESS-0K),

, outright rejection (MESS-REJ), or a request to hold the
message until the receiving MSG can ask for retransmission
(MESS-HOLD). If the source MSG decides to accept the
request to hold, it signifies by sending HOLD-0X and places
the transaction in the state "Awaiting XMIT" (transition 5).
Receipt of an XMIT protocol item will stimulate
.retransmission of the MESS (transition 6), or the
transaction may die through receipt of a rejection or

through old age (transition 3).

The self-loop from the "No MESS pending" state
(transition 1), which responds to a MESS-HOLD for a

non-existent transaction by sending MESS-CANCEL, 1is the
result of the model's handling of timeouts. If the
transactions's time 1limit expires while it is 1in the
"Awaiting MESS-0K" state (transition 4), no MESS-CANCEL is

sent to indicate that th2 message has been aborted. Thus,

if the remote MSG later shows an interest in continuing the

transaction, it is nscessary to cancel it explicitly.

The routines in QUEUE that implement transitions shown

j in figure 2 are EnQlutputMess, RacordMESS\0X, ﬂ

RecordMESS\REJ, RecordMESS\HOLD, RecordXMIT.

Abstract Model of MSG_ 27
2.3.1.2 Incoming Messages

Figure 3 shows what happens at the receiving end of a
similar transaction. Here the initial state is labelled
"Awaiting MESS",. In this state, either there is no
transaction pending at all, or a ReceiveMess primitive has
preceded the arrival of a matching MESS item. In the latter
case, a MessHandle for the transaction is queued in the

ReceiveMessQ of the receiving process.

When a MESS item arrives, it may be accepted outright
(transitions 3 and 4), or rejected outright (transition 4),
or the receiving MSG may ask the sender to buffer the
message (transitions 1 or 2). Transition 3 is taken when no
matching ReceiveGenericMessage or ReceiveSpecificMessage
primitive has been issued by a local process. Transition 1
occurs when the sending MSG has offered in advance to buffer
the message, if necessary, and the receiving MSG has

accepted the invitation.

When there is soma delay in de2livering the message, its
MessHandle waits in the InputMessQ of either the appropriate
generic class (if the message is generic) or the destination
process (if it is specific) until it can be disposed of. 1In
the "Awaiting ReceiveMess" state, either a Receive primitive
is executed and the messagze is delivered, or the time limit
placed on the transaction expires and tha MessHandle is

deleted (transition 14).

THIS PAGE IS BEST QUALITY PRACTICABLE
Abstract Model of MSG FROM COPY FURNISHED TODDC ___ 27A

Awaiting
MESS

Awaiting Awaiting Held
ReceiveMess HOLD-OK by
sender

.

Avaiting
retransmission

: MESS(HoldOk)/send MESS-HOLD

MESS/send MESS-HOLD

: MESS/send MESS-0X

MESS/send MESS-0X,

complete ReceiveMess

MESS/send MESS-REJ

| HOLD-0X/send XMIT
MESS-CANCEL/ --

‘ ReceiveMess/ --

Buffer free/send XMYIT

¢+ MESS-CANCEL/ --

Timeout/s2nd MESS-REJ

: MESS-CANCEL/ --

Timeout/ --

HOLD-0X/ --

HOLD-0X/send XMIT

: MESS/send ME3S-0K,

complete ReceivelMass

2 MESS/s2nd “MESS-REJ

' MESS-CANCEL/ =--

Timeout/ --

MESS/send MESS-HOLD

: MESS(HoldOk)/send MESS<HOLD

MESS/send MESS-0K

ReceivelMess/conplete ReceiveMess

] Timeout/ =--

W N\-—l

O W ~ (e, 0¥

—-— e ed
Swn) —
“e oo s

Figure 3. State Transitions for Incoming Messages

' : - o N— —— ' |mnm|n“'

e

Abstract Model of MSG 28

In the "Awaiting HOLD-OK" state, a proper stimulus 1is
either MESS-CANCEL or HOLD-OK. MESS~CANCEL terminates the
transaction (transition 7) and causes its record to be
deleted. HOLD-OK may cause MSG either to send an XMIT
(transition 9), if buffer space for the message has become
available, or simply to put the transaction in the "H21ld by

sender” state (transition 8).

Transactions get out of the "Held by sender"™ state
either because the sender can no longer afford to hold a

message and sends MESS-CANCEL (transition 6), or because

" sufficient buffer space becomes available to enable MSG to

request retransmission of the message by sending XMIT
(transition 5). The state "Awaiting retransmissicn" is
almost equivalent to the initial state "Awaiting MESS" since
the same responses are possible for a retransmitted messaze
as for an initial messaze (though a request to re-hold is
unlikely). One point of difference 1is that the initial
state has transitions for HOLD-0K and MESS-CANCEL
(transition 4). Like the initial state self-loop in figure
2, these result from the decision not to flatly terminate a
transaction which has timed out. In this case, if a timeout
occurs in the state "Awaiting HOLD-OK" (transition 7), MSG
deletes the transaction without sending MESS-REJ. 2
later, a HOLD-OK arrives for that transaction, MSG responds
by inviting retransmission (XMIT). If a MESS-CANCEL comes

in for a discarded transaction, it is just ignored.

o

Abstract Model of MSG 29

The routines that implement the transitions of figure 3
are EnQlnputMess, EnQReceiveMess, RecordHOLD\OK, and

RecordMESS\CANCEL.

2.3.1.3 Generically Addressed Messages

An aspect of MSG's message handling procedures not
displayed in figures 2 and 3 is its treatment of generic
messages. On output, a generic message with a specific
destination host is treated Jjust 1like a specifically

addressed message. If no host is specified, however, MSG

"must choose one from a list of hosts supporting the chosen

generic category, e.g., Works Manager. If the message 1is
not accepted by the first host, MSG tries the others in the
list until either the message is accepted or the 1list 1is
exhausted. To implement this search, MSG (in EnQOutputMess)
marks such a message as having been hostless, and then
assigns it the first host suitable for its generic class.
The handler of message rejections (RejectOutputMess, a
subroutine of RecordMESS\REJ) recognizes a transaction that
has been marked as hostless, and chooses the next host in
the list. If the list 1is exhausted, the pending

SendGanericMessage is aborted.

When a gen2ric messaze is received, MSG first looks for
a destination process of the right category that has issued
a ReceiveGenzricMessage. If none is available, it will try

to start a new process of the generic category and deliver

Abstract Model of MSG 30

the message to the new process. If the quota for such
processes has been reached, and the option of holding the
messaZe has not been ruled out by the sender, MSG will queue
the messagze in the InputMessQ for the generic category until
a process issues a matching Receive or until a new one can

be created.

2.3.1.4 Message Flow Control

To help determine when to request that a message be
held by 1its sender and when to prompt its retransmission,
MSG maintains two counts for each potential destination
process and for each generic category. The flrsic,
FreeBufferSize, gives the amount of text »>uffer space
alloted to the process that is not already 1in use by
messages to or from that process. The second,
CommittedBufferSpace, 1is the total text 1length of the
messages currently being retransmitted by their senders.
The value of FreeBufferSize 1less CommittedBufferSpace is
called VirtualFreeSpace. VirtualFreeSpace is used to decide
when to stimulate retransmission by sanding XMIT. 'When its
value rises above a threshold, either through the freeing of
somé buffer space or the timeout of an expectad
retransmission, MSG looks in the appropriate InputMessQ for
a held messagze to call in. Of course, the commitment of
buffer space is not absolute. Unanticipated messages may
arrive and bs accepted before the one retransmitted, forcing

its further delay. It seems likely however, that the simple

Abstract Model of MSG 31
algorithm chosen will perform well in most cases. If not,
the model leaves ample latitude for changing it.

2.3.1.5 Sequencing of Messages Marked For Special Handling

As mentioned in the introduction, the MSG specification
defines two classes of messages, called sequenced and

stream-marked messages, for which special rules govern

delivery order. All sequenced messages from a given source
to a given destination must be delivered in the order

submitted, and failure of one such message inhibits any

further sequenced message flow between the processes until

the source process executes a Resynch primitive.
Stream-marked messages must be delivered after completicn of
any prior output messazes to the same destination and before
delivery of any subsequent messazes. Failure of a
stream-marked message inhibits all further message traffic
from the source to the destination until a Resynch is issued

by the sander.

Message sequencing is effected entirely by the sending
MSG (see EnQHostSpecificMess), which checks before
tranasmitting any messaze whethar there 1is an existing
incomplete messagze to the same destination that blocks
transmission of thes current messaze under the rules, (This
is the reason OutputMessQ 1is a queue and not a set.) The
transaction is placed in the special state "Awaiting oprior

MESS completion".

Abstract Model of MSG 32

Later, when a prior message transaction completes
successfully, the subroutine AcceptOutputMess scans the
output queue for later messages that are wunblocked by the
completion, and it sends these messages. When a prior
message is aborted, a similar scan occurs (in subroutine
RejectOutputMess); however, in this case it may be necessary
to abort some of the blocked message transactions because a
sequenced or stream marked message has failed. If so, a set
of "inhibited destinations" (InhibitedDestS) is updated for
the source process, to ensure that further messages (or
possibly just sequenced messages) to the same destination

are inhibited pending a Resynch.

2.3.1.6 Strictly Local Transactions

When the destination of a messagze is a process on the
same host as the source process, the network interface is of
course not used. However, the queue management routines
behave in most respects as though the message were being
transmitted between distinct hosts. A separate transaction
record 1is created for the "incoming" message (though not
necessarily a separate copy of its text) when it is passed
from the output handlers to the input handlers. It may even
happen that the message will be "Held by sender", if the
buffers alloted to the destination process are too full to
permit accepting it. Locally h4a21d messazes are 3ziven

priority over others, however, since the response to a local

"XMIT" request is instantaneous.

Yo

Abstract Model of MSG 33
2.3.3 Handling of Alarms

Alarm handling in MSG is just 1like message handling,
but without several of the complications. Generic
addressinz and sequencing ére not issues. Text buffering is
no problem since alarms have only a fixed length, very short
alarm code. Thes MSG-to-MSG protocol for alarms does not
permit requests analogous to MESS-HOLD, so the state
diag}ams for input and output alarms are trivial. Handling
of local (intraMSG) alarm transmissions is identical to that

for messages. The only special feature of alarm

" transactions is that a process may choose to reject all

incoming alarms by setting its IAccept flaz to FALSE (using
the AcceptAlarms primitive). MSG simply checks this flag
before accepting an alarm, and rejects the alarm when the

flag is off.

The model wuses the name "ReceiveAlarm" instead of
"EnableAlarm" (used in the MSG specification), to emphasize
the analogy with ReceiveMess. The routines in QUEIUE that
deal with alarms are EnQOutputAlarm, EnQInputilarm,

Record ALARM\OK, and RecordALARM\REJ.

2.3.4 Handling of Direct Connections

The astablishmant of direct connactions between MSG

user processes differs in several respects from th2

transmission of messages or alarms. The roles of sender and

R AN o ey 1 b P

Abstract Model of MSG 34

receiver do not exist. Instead, both processes agree to
open the connection by executing matching OpenConn
primitives, and they <close it (in the normal case) by
issuing similar CloseConn primitives. A connection
transaction, wunlike a message or alarm, does not end with
the completion of the primitive that initiated it, since a
record must be maintained for use in closing the connection.
Special provision is also necessary for signalling a local
process that a connection has been broken other than by a
normal closing sequence. MSG's handling of direct

connections is diagrammed in figure 4.

The events that give rise to transitions' are the
execution of OpenConn and CloseConn primitives by the local
process and the receipt of CONN-OPEN, CONN-CLOSE, and
CONN-REJ protocol items from a remote MSG. MSG instances
exchange CONN-QOPEN items before opening a connection between
the two processes requesting it. They exchange CONN-CLOSE
items either when requested to close a connection or when a
connection cannot be opened because of a mismatch in
parameters. CONN-REJ is used to reject either a CONN-QPEN
or a CONN-CLOSE that is invalid.

In the initial state of figure 4, 1labelled "No
connection", the receipt of a CONN-OPEN item (transition 2)
creates a transaction record and 1leaves it in state
"Awaiting OpenConn", that is, awaiting local execution of an

OpenConn primitive for a matching connesction. When the

s W =
. ee oo oo

~ OoOwm

F Abstract Model of MSG

connection

Awaiting
CONN-OPEN

Awaiting
CONN-OPEN or
CONN-CLOSE

No

OpenConn/send CONN-OPEN
CONN-QOPZN/ --
CONN-CLOSE/send CONN-REJ
COWN-REJ/ --
CONN-QPZ!/open coanection,
conplete OpenConn
CONN-OPZN/send CONN-CLOSE
CloseCona/send CONN-CLOSE,
abort OpenConn
COHNN-CLOSE/abort OpenConn,
send CONN-CLOSE
COlUN=-REJ/abort OpenConn
Timeout/abort Cpenlonn
send CONN-CLOSE
CONN-CLOSE/
CloseConn/send CONN-CLOSE
Error/send CONN-CLOSE
OpenConn/send CONN-OPEN,
complete OpenConn

Awaiting
CONN-CLOSE

Awaiting
CloseConn

Awaiting
OpenConn

Mismatch -
awaiting
CONN-CLOSE

14:
153

16

s

Figure 4., State Transitions for Direct Connections

THIS PAGE IS BEST QUALITY PRACTICAREA
FROM COPY FURNISHED T0 DDG B

Connection
open

OpenConn/send CONN=RZJ,
abort OpenConn
Timeout/send CONN-REJ
CONN=DPEN/ --
CONN=CLOSE/abort. Clos2Conn
CONN-REJ/abort CloseConn
Timeout/abort Closalonn
CloseConn/abort OpenCoan
CONN-CLOSE/abort Openlonn
CONN-REJ/abort QOpenConan
Timeout/abort OpenConn
CONN-CLOSE/complete event
CONN=-REJ/complete eventl
Timsout/complete event
CloseConn/sand CONN-CLOSE,
close connection,
complete CloseConn
Timeout/close connection,
signal broken connection

r P

Abstract Model of MSG 35

local open is issued, the connection types, directions, and
byte sizes supplied by the two sides are compared. If they
match, the transaction 1is placed in the "Connection open"
state (transition 10), the network connection is opened (by
the process delivery server), and the open primitive is
completed normally. If the connection specifications do not
match, then a CONN-REJ is sent to the remote MSG, and the

OpenConn is aborted (transition 11).

Other possibilities while "Awaiting OpenConn" are that
the remote MSG may wish to close the connection before it is
open by sending CONN-CLOSE, or that the 1local transaction
may time out. In the former case, MSG éesponds with an
answering CONN-CLOSE; in the latter, it sends CONN-RZJ as a
reply to the original CONN-OPEN. In either case, the

transaction is deleted from the data base (transition 11).

If the local open precedes the remote open, the state
of the transaction reaches "Connection open" via transitions
1 and 4 and the intermediate state "Awaiting CONN-OPEN". In
this case, however, if connection parameters do not match, a
full-fledged connection close sequence is used, since a full
open saquence will have been completed by the time the
mismatch is discovered. The local MSG sends a CONN-CLOSE
item (transition 5) to terminate the transaction, and places
the transaction in the state "Mismatch - awaiting

CONN-CLOSE" to wait for an answering CONN-CLOSE.

Abstract Model of MSG 36

If, while MSG is "Awaiting CONN-OPEN", a CONN-REJ 1is
received instead, or if the transaction times out waiting
for a reply, the 1local OpenConn 1is aborted and the

transaction expunged (transition 7).

Once the connection is open, an exchange of CONN-CLOSE
items will 1lead to 1its orderly <closing. The path from
"Connection open" to "No connection" 1leads either through
"Awaiting CloseConn" or "Awaiting CONN-CLOSE" (transitions 8
or 9), dependinz on the order of events. If the transaction
times out while a 1local <close is awaited, a special
"connection broken" signal will be sent to the user process,
if such a signal has been specified in opéning the

connection.

The transition diagram is complicated by the fact that
it 1is possible for a user process to execute an OpenConn
pfimitive and then a CloseConn before the OpenConn has
completed. There are two states in which an OpenConn can be
pending, "Awaiting CONN-OPEN" and "Mismatch - awaiting
CONN-CLOSE". In both cases, the pending opesn is aborted
immediately when the CloseConn is issued. From "Mismatch -
awaiting CONN-CLOSE", the successor state 1in this case
(transition 14) 1is "Awaiting CONN-CLOSE", the usual
intermediate state when a CloseConn 1is pending. The
CONN-CLOSE item from the 1local to the remote MSG will
already have been sent when the mismatch was discovered.

From "Awaiting CONN-OPEN" a CloseConn takes the transaction

Abstract Model of MSG 3

into the special state 1labelled "Awaiting CONN-OPEN or
CONN-CLOSE" (transition 13). A CONN-CLOSE is sent by the
local MSG, but it may or may not reach the remote MSG in
time to prevent a CONN-OPEN in reply to the originzl
CONN-OPEN sent. The special state is included to receive

and ignore that reply, if it comes (transition 12).

The routines in QUEUE that implement handling of direct
connactions are EnQOutputOpenConn, EnQOutputCloseConn,

EnQInputOpenConn, EnQInputCloselonn, and RecordCONN\REJ.

2.4 Cancellation of Incomplete Transactions

The CANCEL module contains the routines that dispose of
transactions that cannot be successfully completed. This
may happen because 1) the user Rescinds the transaction, 2)
the user process terminates and a StopMe is performed, 3) a
protocol item is waiting to be output and thz host to which
the item 1is addressed dies, or 4) the transaction is timed
and the timer expires. When a transaction is cancelled two
basic types of action are necessary -- the transaction must
be finally Jdisposed of locally, and th2 remote MSG must also
cancel its version of the transaction. The precise form of

the action depends on the transaction's state.

Local cleanup of a transaction generally consists of
removing it from its owning process's transaction lists (the

owning process is the one for which the transaction was

Abstract Model of MSG 38

created and whose lists contain it) and, if it is a pending

event, delivering it to that process, For example,
cancelling a transaction in the "Awaiting CONN-OPEN" state

involves removing it from its owning process's connection

set and completing the OpenConn pending event that initiated

it. Local messaze transactions are treated specially. They
are exceptional in that both source and destination

transactions are available, and are thus both cancelled

! locally at the same time.

Remote cancellation is generally accomplished by

é ‘" sendinz a protocol 1item to the remote MSG. For example,
(sending a MESS-CANCEL item cancels a transaction in the
"Awaiting XMIT" state. It may be that a2 prior protocol item

related to the transaction beinz cancelled is waiting to be

sent, in which case the item can simply be changed to

reflect cancellation. For example, a transaction may be in

the "Awaiting XMIT" state with a HOLD-OK item waiting to be

sent -- changing the item to MESS-CANCEL cancels the

transaction. It is also the case that cancellation can be

effected by not sending a protocol item. Such an iten,

initiating an MSG-MSG negotiation and waiting to be sent,

can be removed and tne transaction nipped in the bdud. For

example, a transaction may be in the "Awaiting CONN-OPEN"

state with a CONN-OPEN item waiting to be sent -~ remnoving

the CONN-QPEN item cancels the transaction before the remote

MSG has heard anything. A transaction may also be cancelled

by doinz nothing, relying on the system's response to the

e

-

Abstract Model of MSG 39

receipt of spurious protocol items. For example, a
transaction in the "Awaiting HOLD-OK" state can be cancelled
simply by removing all local knowledge of the transaction.
Later, if the remote MSG sends a HOLD-OK item for a
transaction that no longer éxists, the system will reply

with a MESS-REJ.

The four routines that call LocalCancel and
RemoteCancel reflect the four causes for transaction
cancellation -- RescindPendingEvent, StopTransaction,
HostDeadTransaction and TimeoutTransaction. The first two
are invoked from the user call servers, the third from the
network output servers, and the fourth from tﬁe timeout
handler -- from at least three MSG paths. This gives rise
to contention issues. In order to dispose of a transaction
both the transaction record and the record for its owning
process must Dbe seized. The wuser call server has the
process and needs the transaction, while the network output
server and the timeout handler have the transaction and need
the process. The user call server is given priority. The
network output server and timeout handler do a non-blocking
test-seize of the transaction and its owning process. 12
the test fails they zo on to other transactions, returning

later and trying again.

Whather or not a pending event is rescissible dep2nds

on whether the event can, with certainty, be cancelled

remotely. For example, an event in the "Awaiting XMIT"

Abstract Model of MSG 40

state ¢can be cancelled with certainty by sending a
MESS-CANCEL item. On the other hand, an event in the
"Awaiting MESS-0K" state, with a MESS protocol item already
sent, cannot be rescinded because the message may already
have been accepted remotely (with a MESS-0K response on the
way). Sendinz a MESS-CANCEL item would not necessarily
succeed. Using this certainty test, RescindPendingEvent
determines, based on the state of the event passed to it,

whether that event is rescissible.

The CANCEL module's province also includes transaction
' timing. Transactions are timed so that wusers receive
definitive dispositions of pending events without having to
wait indefinitely in uncertainty, and so that the MSG
resources used by a transaction may be freed after an
inordinate delay in completing the transaction. A
transaction is timed whe2n it is in the queue of the timeout
handler. The queue 1is -sorted by timeout deadline, the
transaction timing out earliest being at the front of the
queue, StartTiming 1inserts an entry into the timer queue

and StopTiming removes one.

TimeoutHandler, the routine comprising the timeout
handler path, processes transactions w~nich have timed out.
The SIGNAL mechanism is used to awaken TimeoutHandler when
timeout occurs, TimeoutHandler obtains and WAITs on a

signal activated when the deadline of the transaction at the

front of the timer queue expires, and cancels the

T TE—

Abstract Model of MSG 41

transaction when the signal 1is received. TimeoutHandler
WAITs additionally for a signal from StartTiming. If the
transaction passed to StartTiming will time out earlier than
the earliest existing timer queue entry, TimeoutHandler must
be notified to wait for the new, earlier deadline rather

than the old, later one.

2.5 The Network Interface

The routines that maintain communication with other
MSGs are found in the REMOTE wmodule. They establish
inter-MSG network connections and exchange protocol items

over tham,

Connections are opened for two reasons. A 1local user
process may wish to communicate with a remote one on a host
with which no connection exists, in which case the local MSG
initiates an Initial Connection Protocol sequence with the
MSG on the desired host. Alternatively, a remote MSG may
desire to establish a connection, starting an ICP sequence

to which the local MSG must respond.

When a connection is initiated locally, the user call
server enters the remote host in HostS, assigns the nost to
a network server pair, possibly creating new servers for
this purpose, and notifies the output server, via a special
entry in th2 server's delivery qusu2, that an ICP should b2

initiated. (This occurs in the SeizeHostHandle routine).

Abstract Model of MSG 42

The output server performs the ICP request, establishing the
sockets to be used for the connection (in RequestICP). If
the ICP request should fail, all protocol items waiting to
be sent to the unresponsive host are cancelled via host dead
action. The other MSG's authentication demand, in response
to the ICP request, is handled asynchronously by the

authentication handler path (AuthenticationHandler).

When a remote MSG initiates a connection the ICP
handler path (ICPHandler) responds to its request. It
authenticates the requesting entity as an MSG, establishes
the sockets to be used for the connection, makes the HostS
entry, allocates servers, and finally notifies the output
server, by enqueuing a special entry in its delivery queue,

that a connaction should be opened.

In both cases the output server (in the routine
NewHost) opens the actual MSG-to-MSG connection, exchanges
synchronization information with the remote MSG, cancels
transactions to tha new host with the wrong incarnation
number, and notifies the input server that the new host

exists.

When properly functioning connections with another MSG
exist they are used for exchanzinz protocol items, the units
of inte *-MSG communication. The process of sesnding and
receiving protocol items has two parts. Interanal data

structures must be converted to and from the external

protocol formats recognized by all MSGs, and those external

Abstract Model of MSG 43

items must be sent and received over the network. In the
abstract model, these conversions are defined in terms of
pseudo data structures, thus making them non-procedural and
separate from network data transmission. This method of
specifying conversion provides clarity and modulérity,

aiding understanding and maintenance.

The conversion specifications are wused as templates
over buffers containing network data, imposing order on an
undifferentiated mass of bits. They are defined in a form
similar to the EL1 STRUCT operator. The FORMAT operator
takes a list of fields, each field corresponding to one in
the external protocol item being converted. Fields in the
FORMAT definition appear 1in the same order as in the
external item. In general a field is described by a field
name, the data type of the entity represented by the field,
and the length in network bytes of the field in the external
protocol item. For example, in the definition of
MessFormat, the first field is Length, which contains the
number of network bytes in the item. Its desired type |is

ShortInt and it is two network bytes lonz.

Some fields do not have this form. Boolesan fields have
no network byte 1lenzth -- they are known to be individual
bits. Other fields consist of several subfields occurring
in a common pattera. Such fields have, instead of a mode

and length, a """ (indicating the existesnce of subfields)

and the name of the FORMAT wnhere the subfields are defined.

Abstract Model of MSG 4y

For example, in MessFormat SourceProcess and DestProcess
have the structure of an MSGProcessName, which is defined in
a separate FORMAT. Other fields are converted by routines.
In some cases these routines are named in and used by
FORMAT. Such routines, preceded by the """ operator, are
specified in the type position of the field using them. For
example, in MSGProcessName GenericName 1is converted by
GenericClass. In other cases conversion routines are
invoked independent of FORMAT. Fields converted in such a
manner appear in FORMAT definitions as documentation. They
are indicated by a "---" in the type position. For example,
the message text field in MessFormat is handled by special
text moving routines, but the text's presance is documented

by the Text field.

Many external protocol fields can be converted and
assigned to and from their internal representations

directly, without further processing. For example, in
ConnOpenFormat ConnID 1is logically equivalent to CoanID in
ConnBlock, the target internal representation. On the other
hand, ConnOpenFormat's Type Booleans do not correspond to
ConnBlcck's ConnType and ConnDirection, with further
processing nscessary. Those fields that can be assignad
directly are indicated in a FORMAT by a "8"., They must have
the same name, mode and meaning as the target internal
field. Such fields are susceptible to collactive

assignment, where a whole item is assizned to and from its

internal equivalent without individual fields being

Abstract Model of MSG 45

mentioned.

FORMAT-d2fined conversions are used in the network
input and output servers. They are invoked by the ";i",
nmim o wgiin and "} i>" operators. The || operator specifies
the FORMAT to be imposed on the network buffer, and the |
operator references a particular field in the given FORMAT.

For example, in ProtocollInput the Header FORMAT is used (1}

to retrieve (}) the Command field in it. The <} and }{i>
operators are used to perform the collective assignment.
They obviate th2 need for using the | operator on every
" field. For example, in InputMess the <|| operator assigns
all @-marked fields in MessFormat from the network data
buffer to the internal MessBlock, and in OutputMess | }> does
the reverse. Both operators also set the FORMAT to be used
by the | operator, so that after <} or {i>, | may be
employad for individual fields. For example, in
InputConnOpen translation between the external Type Boolzans
and the internal ConnType and ConnDirection fields 1is

per formed using ..

Both th2 natwork input server and the network output
server have a similar structure. Each is organized around a
dispatcher, which transfers control to routines specializad
for processing specific protocol items. The 1input
dispatcher, ProtocollInput, waits for an iten to come in on

one of its network channels, while the output dispatcher,

ProtocolOutput, sends out items put in its delivery Qqueue.

Abstract Model of MSG 46

The item-specific routines perform FORMAT-defined assignmant
to and from the network data buffer and the proper
transaction record and, in the case of input, call the

appropriate QUEUE routine.

T

Abstract Model of MSG 47

3. The Languaze of the Model

The MSG abstract model is written in EL1 [Manuall, the
base lanzguage of the ECL system, which hosts the testbed for
our program development experiments. During refinement, EL1
text will be reducgd to SPECL, a systems programming version
of EL1, and then into BLISS, an implementation language.
BLISS was chosen because there are BLISS compilers for both

of the machines for which we plan to make MSG realizations.

Because the systems resulting from refinement must be
independent of the ECL runtime facilities, we have taken
care to ensure that dependence on certain ECL features will
be easy to remove. The model wuses explicit freeing of
records allocated in the data base, for example, bsacause
garbage collection will wusually not be practical in a
concrete instance, and because determining by mechanical
analysis when storage can be reclaimed remains a difficult

research problen.

The modelling language also includes exteasions to EL1
wnich aid readability and provide the freedom to refine
certain expressions in a variety of ways. Some of these

extensions are specially handled by the tools wused in

refinement.

Abstract Model of MSG 48
3.1 Data Type Generators

The model makes use of operators for type creation that
are not part of EL1, but that have behaviors related to
similarly named base language type generators. Pointer, for
example, constructs types whose 1instances behave 1like
pointers, but could be implemented either as machine
addresses or table indices. Value is the operator used to
dereference an abstract pointer. Ssquence denotes a class
of objects that are homogeneous 1indexable collections,
without pinninz down wnether its members are of fixed or
" variable length. Union types represent objects whose types
are not fixed until runtime; type tagzs and hidden pointer
levels may be wused, or it may be possible to avoid this

overhead. Enumeration produces a type whose elements are

members of a set of tokens fixed when the type is generated.
Constants of an enumeration type are delimited by double
quotation marks. (The EL1 builtin type S3SYMBOL, whose
literals are normally indicated by double quotes, 1is not
used per se in the model since it implies runtims hash table

maintenance.)

The type operator HAS creates heterogeneous record
types from tuples containing field names and componznt
types. HAS will also be used later in MSG developmznt to
effect typ2 refinsment -- adding additional fields to

existing types to satisfy needs that arise at lower levels

of abstraction.

Abstract Model of MSG 4q

3.2 Set and Queue Abstractions

The model makes use of two abstract type gzanerators
that are neither explicitly defined nor analogous to base
language operators. Set(M) represents an unordered,
non-repeating collection of objects of type M. Insert and
Remove are generic procedures that enter and delete elements
from sets, Quaue(M) denotes an ordered, fixed-capacity
collection of M-values that need not be wunique within the
collection. EnQ and DeQ are gen2ric procedures that enter
and delete queue elements. Front is a function that returns
the 1least recently entered element of the queue it is
applied to. IsFullQ is a predicate that returns fRUE whan

applied to a quzau2 that has reached its capacity.

The names of sets in the model are conventionaily
terminated with a capital S (e.g., Conna2ctionS); names of

queues end with a capital Q (e.g., InputAlarmQ).

3.3 Iteration Expressions

To ensure that the model routines that deal with
collection abstractions remain independent of the
representations chosen, we use abstract itération
expressions. The zeneral form of these loops is

FOREACH E AT P IN C DO 31; ... ; Sk END
This expression will bind the identifier E to successive

elements of the collection C and execute the statements S1

Abstract Model of MSG 50

through Sk once for each such binding. As with EL1
iterations, any statement Si may have the form B => R, where
B and R are expressions and B yields a Boolean result. If,
when such a statement is executed, B evaluates to TRUE, then
the loop is terminated and the value of R becomes the ‘value

of the loop.

The clause AT P is optional. When it appears, the
identifier P will be bound on successive iterations to a
state variable whose exact definition depends on the data
type of the collection C. This state variable can be usad
to efficiently delete and insert elements in the collection
during an iteration. For instance, thz2 generic procedure
DeQAt(P), used during an iteration over a queue C, would
remove the currently bound element from th2 queue. It would

be equivalent to DeQ(C, E), but would be more efficient.

Normally, the order in which the elements of a
collection are bound by an iterator is not defined. To
guarantee scanning of queues in least-to-most recent order,
we use

FOREACH E FromFrontOf Q DO ... END

Abstract Mddel of MSG 51
Model Text

- @ W ® e W= @ e @ ® w W W e = w W e

APPENDIX: Text of the MSG Model

MSG ... Abstract Version

The abstract version occupies the followingz modules:

GLO3AL Comnon definitions and tables
(This file.)

DRIVER - MSG initiation and main routinz

PROCESS - Usor progran linkazes to M3G primitives
LOCAL - Code for local process sarvers

QUEUE - Transaction guaues management routines
REMOTE - Code for remote host sarvers

CANCEL - Pendinz event timeout managemant

' l/ llﬂ,.

Sets, Quau=s, and Handles ...

In abstract MSG, the only difference between a "set" and

a "queu2" is that the latter is expacted to conform to some
queueing discipline as rezards adding and deleting entries.
No coamitment is made about their representationas.

A "handle"” desiznates a set or queue entry. It has the
abstract properties of a pointer. More than one set
and/or queue may contain the data referencaed dy a handle
and thus sharz the data referenced by th2 handle.

A handle is not necessarily represented as a physical
storaze address or pointer.

................... R Y nn,

Abstract Mddel of MSG 52
Module GLOBAL "

! Type Definitions R YALLN
TransactionID <-
L}

. Encoded version of TransactionHandle,

. used to identify pendinz event for

. Rescind primitive and as MSG network

. protocol SourcelD and DestID. ' */ ...;

ShortInt <~ 'Short integer, unsigned' %/ ...;

StateCode <-
Enuneration("NullState", "Delivered", "Awaiting MESS-OK",

"Awaiting XMIT", "Awaiting MESS",
"Awaiting ReceiveMess", "Held by sender",
"Awaiting prior MESS completion",
"Awaitinz HOLD-OK", "Awaiting retransmission",
"Awaiting ALARM", "Awaitinz ALARM-OK",
"Awaiting ReceiveAlaram",
"Awaiting CONN-OPEN or CONN-CLOSE",
"Awaiting CONN-CLOSE",
"Mismatch - awaitinz CONN-CLOSE",
"Awaiting CONN-OPEN", "Awaiting CloseConn",
"Awaiting OpenConn", "Connection open");

ConnDirectionCode <- Enumeration("In", "Out", “InQut");

ConnTypeCode <-
Enumeration("Binary", "UserTELNET", "ServerTELNET");

ProtocolCode <-
Enumeration("NullProtocol Command", "MESS', '"MESS-OK",

"MESS-REJ", "MESS-HOLD", "MESS-CANCEL", "XMIT",
“"ALARM', "ALARM-OK", "ALARM-REJ", "CONN-OPEN",
"CONN-CLOSE", "CONN-REJ", "Start ICP",
"Finish ICP");

ConnIDCode <~ Snortlnt;

HostCode <~ ShortlInt;

AlarmCode <~ Shortlnt;

GenericClassCode <- Enumeration('NullCode", ...);

ReasonCode <~ Enumeration("Incomplete", "Normal", ...);

HandlingCode <~
Enuneration("Normnal”, "Sequence", “StreanMark", "Wait");

String <- Sequence(Character);

StrinzPtr <- Pointer(Strinz);

. 4

Abstract Model of MSG
Module GLOBAL

ProcessName HAS
< Host(HostCode), Incarnation(ShortInt), Instance(Shortlnt),
GenericNane(Union(StringPtr, GenericClassCode)) >;

ProcessHandle <- Pointer(ProcessBlock);
ProcessBlock HAS

< Name(ProcessName), UserChaanel(ChannelHandle),
OutputMessQ(Quaue(MessHandle)),

Qutput AlarmS(Set(AlarmHandle)), ConnectionS(Set(ConnHandle)),

InputMessQ(Quaue(MessHandle)),

Input AlarmQ (Queue(AlarmHandle)) ,

InhibitedDestS(S2t(STRUCT(DestProcess:ProcessName,
InhibitAll:BOOL))),

DeliveryServer(ServerHandle), IAccept(BOOL),

FreeBufferSize(ShortInt), Carmltted&:f‘ferSpace(ShortInt) .

RaceiveMassQ{Quaue(MessHandle)),

ReceiveAlarmQ (Queue(AlarmHandle)),

CloseConaS(Set(ConnHandle)) >;

GenericHandle <- Pointer(GenericBlock);

GeanericBlock HAS
< Class(StringPtr), Code(GenericClassCode),
HostS(Sat(HostCode)), RunFile(Filename),
ServerS(Set(ServerHandle)) Inputb‘.essQ(Queue(mssHandle))
FreeBufferSizae(Snortint), Conmttadauf’fanpace(Sno*tInt)
ReceivelMessQ(MessHandle), Unsupported(B0OJL) >;

ServerHandle <-
Pointer(Union(InputServerBlock, DeliveryServerBlock));

DeliveryServerBlock HAS
< DeliveryQ(Queue(TransactionHandle)),
Server(Procedure), CnannelS(Set(CnannelHandle)),
Running(BOOL), WakeUpSignal(SignalType) >;

InputServerBlock HAS
< Server(Procedure), ChannelS(Set(ChannelHandle)),
WakeUpSignal(SignalType) >;
HostHandle <- Pointer(HostBlock);
HostBlock HAS
< Host(HostCode), Incaraation(ShortlInt),
ConnactionS(Se t(CﬂannelHandle)).
DeliveryServer(ServerHandle), InputServer(ServerHandle) >;
ChannelHandle <- Pointer(CiannelBlock);
ChannelBlock HAS < User(UserHandle) >;

ContactHandle <~ Pointer(ContactBlock);

ContactBlock HAS
< RenoteHost(HostHandle), RemoteSockat(Integer),
Local Socket (Integer), ProtocolCommand(ProtocolCode) >;

53

Abstract Model of MSG

Module GLOBAL

MessHandle <- Pointer(MessBlock);

s MessBlock HAS

; < Op(OpCode), Text(StrinzPtr), TextLength(ShortlInt),

' SourceID(TransactionID), DestID(TransactionID),

, SourceProcess(ProcessName) , DestProcess(ProcessName),

L’ Deadline(Integer), Disposition(ReasonCode), IsGeneric(BOOL),
IsSequenced (BOOL), IsMarkad(BOOL), NoHold(BOOL),

HoldOkay(BOOL), QWait(BOOL), IsHostless(BOOL),

State(StateCode), Signal(SignalType) >;

ConnBlock HAS

< Op(OpCode), ConnID(ConnIDCode), ConnType(ConnTypeCode),

ConaDirection(ConnDirectionCode) , ConnBytesize(Snortint),

i SourceProcess(ProcessName), DestProcess(ProcessNane),
SourcelD(TransactionID), DestID(TransactionID),
Disposition(ReturnCode), Deadline(Integer),
EndSignal(SiznalType), Connection(ChannelHandle),
LocalSocket(Intezer), RemoteSockat(Intezer),
Protocol Command(ProtocolCode) , State(StateCode),
Signal(SignalType) >;

i ConnHandle <- Pointer(ConnBlock);

AlarmHandle <- Pointer(AlarmBlock);

AlarnBlock HAS
< Op(OpGode) , Alarm(AlarmCode), SourceID(TransactionID),
DestID(TransactionID), Disposition(ReturnCode),
Signal(SignalType), Deadlina(Integer),
SourceProcess(ProcessNane), DestProcess(ProcessNane),
tate(StatzCode) >;

TermHandle <~ Pointer(TermBlock);

TermBlock HAS
< Op(OpCode), UserCnannel(ChannelHandle), Signal(SignalType),
Deadlinz(Integer), Disposition(RzasonCode) >;

UserHandle <- Union(ProcessHandle, HostHandle);
TransactionHandle <-

Union(MessHandle, AlarmHandle, ConnHandle, TermHandle,
ContactHandle);

DestHandle <- Union(ProcessHandle, GenericHandle);

Abstract Model of MSG
Module GLOBAL

' DATA ' %/ m;

ProcessTable <- CONST(Sequence(ProcessHandle));

HostS <~ CONST(Set(HostHandle));

GenericTable <- CONST(Sequence(GenericHandle));
ServerTable {- CONST(Sequence(ServerHandle));
TimerQ <- CONST(Queue(TransactionHandle));

TransactionTable <- CONST(Sequence(TransactionHandle));

Abstract Model of MSG
Module GLOBAL

! PRIMITIVE PROCEDURES

~ Abstract Channels ...

in the CCN system.

e o o o o

been received.

of a pending event.

1) ‘/ "";

The following define abstract
channals, used for communication of data between
paths. They are modelled after the channels used

CHOPEN is used to open a channels.
supplies the same ChannellD.
if a CHCLOSE is issued from either side, but

will be closed only after data in the channel has

Each path

The channel is closed

Output on the channel is assuned to b2 blocking
SEND (or =1>), while input blocks only if the
third argunant to RECEIVE (or <j=) is TRUE.
Nonblocking input is used in LOCAL to supply
locations for the results returned at completion

- ConnByteSize defaults according to the Type of
. the channel.
" ={> and <}z ara synonyms for SEND and RECEIVE.
¢ In certain implementations (such as TENEX), they
. will be refinad away and be replaced by assignment.
.................... 'R/ o
CHOPEN <-
EXPR(Id:ChannellD /* 'Channel spec’,

Type:ConnTyp=Code
ConnBytesize:ShortInt;
ChannelHandle) ...;

SEND <-
EXPR(Data:ANY
Channel : Channel Handle;
ANY) ...;

={> <~ SEND;

RECEIVE <-
EXPR(Data:ANY
Cnannel :ChanazlHandle,
Blocks :BOOL
ANY) ...;

VA

/%
Vi

'Operating mode’',

'Data to be transmnitted',

'Where to put received data'

'Blocks if TRUE';

56

ey

T R TR VO AT

Abstract Model of MSG 57
Module GLOBAL
<i= <~ RECEIVE;

<liz= &-

. Infix operator for blocking RECEIVE
] '/
EXPR(Data:ANY, Channel:ChannelHandle; ANY)
RECEIVE(Data, Channel, TRUE);

Makeld <-
]

. Used to construct a ChannellD
. for a network CHOPEN. ' ¥/

EXPR(Host: Integer /* 'Remote host (0 for any)',
RSocket:Intezer /* 'Remote socket (0 for listen)',
LSocket: Integer /® 'Local Socket';

ChanaellD) ...;

Abstract Model of MSG
Module DRIVER

58

. DRIVER - MSG Initialization and main

c routine

InitiateMSG <-
EXPR(Restart :BOOL)
BEGIN
InitializeGenericS()
(Restart -> KillUserProcesses())

/*
/%

SetNewIncarnationNumber();

InitializeServerS() /*
/I [}

. These include the ContactServer
PollAndSleep();

END;

'Read the data from disk’';

. Issue termination signals.
. Also, drop any remnote host
. connections remaining.’';

. Set up set of servers to

. start up and run';

and AuthentificationServer';

S

Abstract Mdel of MSG
Module PROCESS

e e o e & o e o o o o

- e o o o

l/ -3

PROCESS ... User Program MSG Calls

These are the MSG primitive calls.

PROCESS contains code and data that
are included in the user program

to call MSG primitives. The arzuments,
result typa, and tne actual abstract
call for each MSG primitive are given
first below. Each primitive call is
represented as a call of the abstract
routine PCall. Each call is of

the form:

PCall(PrimitiveName,SendList,
Receivelist,IsPendingEvant);

Each PCall call will be refinad according
to the exact mechanism chosen to comnuni-
cate batween the user process and local
MSG in a given operating system and
languaze implenantation.

The SendList and Receivelist include

all arzuments of the primitive call,
classified as to whether each argument
represants data sent to MSG by ths process
or data received from MSG as a result

of executing the MSG primitive.

IsPendingEvent is TRUE for those MSG
primitives which create pending events.

The comnunication algoritim is discussed in
the conmnentary preceding PCall in this file.

— v . i il i M ..

ks

Lk s o

Abstract Model of MSG
Module PROCESS

SendGenericMessaze <-

EXPR(Text:StringPtr,
DestProcess:ProcessName,
Signal:SiznalType,

PendinzEventID: TransactionID,

Disposition:ReasonCode,

Timer:Integer,

QWait:HandlingCode;

ReasonCode)

PCall("SendGenericMessage",

< Text, DestProcess, Signal, Timer, QWait >,
< DestProcess, Disposition >, TRUE);

ReceiveGenericMessaze <-
EXPR(Text:StringPtr,
SourceProcess:Processhame,
Signal:SiznalType,
PendingEventID: TransactionID,
Disposition:ReasonCode,
Timer:Integer;
ReasonCode)
PCall("ReceiveGenericMessaze", < Signal, Timer >,
< Text, SourceProcess, Disposition >, TRUE);

SendSpacificMessaze <-
EXPR(Text:StringPtr,
DestProcess:ProcessName,
Signal:SiznalType,
PendingEventID: TransactionID,
Disposition:RsasonCode,
Timer:Integer,
Handling:HandlingCode;
ReasonCode)
PCall("S2ndSpecificMessaze",
< Text, DestProcess, Signal, Timer, Handling >,
< Disposition >, TRUE);

ReceiveSpecificMessaze <-
EXPR(Text:StrinzPtr,
SourceProcess:ProcessName,
Signal:SiznalType,
PendinzEventID:TransactionlID,
Disposition:RzasonCode,
Timer:Intezer,
Handling:HandlinzCod2,
R2asonCode)
PCall("ReceiveSpacificMessaze", < Signal, Timer >,
< Text, SourceProcess, Disposition, Handling >, TRUE);

;
¥ B
.5

T e

R e

Abstract Mydel of MSG
Module PROCESS

SendAlarn <-
EXPR(Alarm:AlarmCode,
DestProcess:ProcessName,
Signal:SiznalType,
PendingEventID:TransactionID,
Disposition:ReasonCode;
ReasonCode)
PCall("SendAlarm", < Alarm, DestProcess, Signal, Timer >,
< Disposition >, TRUE);

ReceiveAlarm <-
EXPR(Alarm:AlarmCode,
SourceProcess: ProcessNane,
Signal :SignalType,
PendingEventID: TransactionID,
Disposition:ReasonCode,
Timer: Integer;
ReasonCode)
PCall('"ReceiveAlarm", < Signal, Timer >,
< Alarn, SourceProcess, Disposition >, TRUE);

OpenConnection <-
EXPR(ConnlID:ConnIDCode,
ConnType: ConnTypeCode,
ConnDirection:ConnDirectionCode,
ConnBytesize: Integer,
DestProcess:ProcessName,
EndSiznal:SignalType,
Signal :Siznal Type,
PendingEventID: TransactionID,
Disposition:ReasonCode,
Timer: Integer;
ReasonCode)
PCall("QOpenlonnection”,
< ConnID, ConnType, ConnDirection, ConnBytesize,
DestProcess, EndSiznal, Siznal, Timer >,
< Disposition >, TRUE);

CloseConnection <-
EXPR(ConnID:Taz,
DestProcass:ProcessNane,
Signal :SignalType,
PendingEventID:Tag,
Disposition:ReasconCode,
Timer: Inteser;
ReasonCode)
PCall("CloseConnection",
< ConnlD, DestProcess, Signal, Timer >,
< Disposition >, TRUE);

61

Abstract Model of MSG
Module PROCESS

TerminationSignal <-
EXPR(Siznal:SiznalType,
Timer:Integer,
Disposition:ReasonCode;
ReasonCode)
PCall("TerminationSignal", < Signal, Timer >,
< Disposition >, TRUE);

. The following primitives do not
. create pending events.
U ¥ -

StopMe <- EXPR(; ReasonCode) PCall("StopMe");

Rescind «<-
EXPR(PendingEventID: TransactionID; ReasonCode)
PCall("Rescind", < PendingEventID >, < Rasult >);

AcceptAlarms <-
EXPR(IAccept:BOOL; ReasonCode)
PCall("AcceptAlarms", < IAccept >);

Resynch <-
EXPR(DestProcess:ProcessName; ReasonCode)
PCall("Resynch”, < DestProcess >);

WhoAmI <~
EXPR(Name:Processiame; ReasonCode)
PCall("WhoAnI", NIL, < Name >);

62

T

&

SN

Abstract Model of MSG
Module PROCESS

PCall «-
L]

e o o o o

® e © o o ° o ° o o o o o

The infix operators "=z (>" and "<|=" denote
transmission of data from the user process
to MSG (SEND -- cf. CHOPEN in file GLOBAL)
and the reverse. The general protocol is:

The operation nane of the primitive and the
SendList are sa2nt to MSG. MSG validates the
argunents. It returns a disposition which
may be:

"Normal" Execution is conplete, and
the Receivelist return data (if any)
should be received. PCall blocks
until reception is complete.

"Incomplete" A pending event has been created.

The receive is issued to rsquest
the receive list data after
conpletion of the pending event.
If the Signal is blocking, the
user process blocks; otherwise,
PCall exits immediately.

Other An error has been noted oy M3G. The
disposition data has been received.
No pending event has been created.
PCall exits immediately.

When a panding event has successfully
been created, MSG returns a PendingEventID
to tha user. It is used by the Rescind
primitive. It is also used in PCall to
open (using CHOPEN) an individual abstract
channel over which the receive list data
is to be returned by M3G at pending
event comnpletion. MSG closes this channal
afterwards. A separate channel for each
transaction is usad to avoid clutterini the
abstract model with the details of multi-
'plexing use of a sinzgle channal.
/
EXPR(Op :0pCode,
SendList:List,
aceivelist:List,
CreatesPendingEvan.:Bool;
ReasonCode)
BEQIN

63

Abstract Model of MSG
Module PROCESS

DECL Result:ReasonCode LIKE "Normal";
’
Send Op and SendList arguments
to MSG and wait for validation
result.
*/ -3
Op =}> MSGChannel;
SendList =}|> MSGChannel;
Result <|i== MSGChannel;
/%"
. If "Incomplete" (when CreatesPE is TRUE),
- or "Normal", IsAbnormal() fails';
IsAbnornal (Result) => Result;
CreatesPandingEvent => :
BEGIN
]

- 0 L) .

. Receive PendingEventID for Rescind.
. Then open channel and ask for Receivelist
. return data. ' ¥/ -;
PandingEventID <||== MSGChannel;
DECL CH:CnhannaslHandle LIKE

CHOPEN (PendingEventID, In, Binary);
Receivelist <i= CH;

"Normal";
END;

L
. Receive any Receivelist data.
LR
ReceiveList <1i== MSGChannel;
Result;

END;

! DATA 'R/

MSGChannzl <-
L

. Channel usad to connunicate with MSG.
Opened in StartUserProcess.
%/ CONST(ChannzlHandle);

64

R

Abstract Mdel of MSG 65
Module LOCAL ¢

W o I e Vo g T o il i e e e I A i

. LOCAL ... Local process primitive handlers

ICXEPEI TCMERE R Ot A N IS R T e tol, S r WY .

LOCAL handles (via UserCallServer) user
process primitive requests (see PCall

in PROCESS) and delivery of results

of primitive requests (via UserDelivery-
Server.)

Handlers for primitives that create

pending events consist of a Start routine
(found by lookinz up the OpCode in

OpTable) and an Ead routine (in EndOpTable.)
The Start routine receives the SendList from
the user process, validates arguments,
creates the pending event, and calls

QUELE to have tha event enqueued for
further processing. The End routine
handles conpletion of the pending event

. Dby sending the Rzceivelist data to

. the user process.

. Handlers for primitives that do not

. create peanding events (e.g., DoStopMe)

. Send any results to th2 user process;

. 1in these caszs, the PCall code blocks the
. user until the results are received.

R - ————— e = BBV S SILUSONRE . - Ak P LR I S

Abstract Model of MSG
Module LOCAL

' TABLES I

OpCode <-
Enumeration(SendGenericMessaze, ReceiveGenericMessaze,
SendSpecificMessaze, ReceiveSpecificMessage,
SendAlarm, ReceiveAlarm, OpenConnection,
CloseConnection, TerminationSiznal, StopMe, j
Rescind, AcceptAlarms, Resynch, WhoAmI); .

OpTable <-

' Table of procedures to handle user primitive requests.
StartXXX starts and enqueues a pending event.
DoXXX completes the corresponding primitive before

returning.
W74
CONST (Sequence(Procedure) OF
« StartSendMessaze /* 'Send Generic Message',
§ StartReceiveMessage /® 'Receive Generic Messaze',
StartSendM2ssaze /% 'Send Specific Message',
StartReceiveMessage /* 'Receive Specific Messaze',
StartSendAlarm /* 'Send Alarm’',
StartReceiveAlarm /% 'Receive (enable) Alarm',
: StartOpenConnection /% 'Start Open Connection',
| StartCloseConnection /% 'Close Connection',
StartTerminationSignal /* 'Termination Signal',
‘ DoStopMe /% 'Stop Me',
DoRescind /* 'Rescind',
DoAcceptAlarms /% 'Accept Alarms',
DoResynch /% 'Resynch',
DoWhoAnI /% '"WhoAmI');

EndOpTable <-
CONST (Saquence(Procedure) COF

EndSendGenericMessaze, EndReceiveGenaricMessaze,

EndSendSpecificMessage, EndReceiveSpecificMessaze,

EndSendAlarn, EndReceiveAlarm, EndCOpenConnzction,

} EndCloseConnection, EndTerminationSiznal,

EndBrokenConnaction /* 'Not a primitive...
. used to implement
. EndSignal for OpenConnsction');

TimerDefaults <-
CONST(Sequence(3nortInt) SIZE LENGTH(EndOpTable));

Abstract Model of MSG
Module LOCAL

StartSendMessaze <-
EXPR(Op:OpCode, UserChannel:Channelhandle, SP:ProcessHandle)
BEGIN

DECL M:M=ssBlock;

M.SourceProcess <- SP.Name;

DECL Handlinz:HandlinzCode;

< M.Text, M.DestProcess, M.Signal, M.Deadline, Handling > <i=

UserChannzl;

ConvertTimer(Cp, M.Deadline);

DECL MH:MessHandle;

M.Disposition <- ReasonCode <<

BEGIN
Op = "SendSpecificMessage" ->
IsValidHost(M.DestProcess.Host) +>
RETURN("Invalid host address in process name");
CASE(Handlinz, Op]

[("Normal"] => TRUE;
["Sequence", "SendSpecificMessaze"] => M.IsSequenced;
["StreanMark", "SendSpecificMessaze"] => M.IsMarked;
("QWait”, "SendGenericMassage") => M.IsGensric;
TRUE => RETURN("Handling given is invalid");

END <- TRUE;

OR(NOT M. IsGeneric,
EncodeGenericClass(M.DestProcess.GenericClass),
CheckBlankGanericFields(M.DestProcess)) #>

"Generic class given is invalid";
IsValidSiznal(M.Siznal) #> "Siznal given is invalid";
FOREACH C IN SP.InhibitedDestS :

REPEAT

C.DestProcess = VAL(M.DestProcess) =>
BEGIN
C.InhibitAll =>
RETURN("Send message stream out of synch");
M.Sequenced ->
RETURN("Sequsnced send message stream out of synch");
END;

END;

CheckUserQuanzh() +> "Qutput messazes quenchei";

MH <- Allocate(MessHandle, M);

"Incomplete";

END;
Disposition ={> UserChannzl;
IsAbnormal(Disposition) => NOTHING;
MH.UsarChannel <-
CHOPEN(4H. SourceID <- AssiznTransactionID(MH) =1>
UserChannal, "Out", "Binary");
EnQOutputMess(MH, SP);
END;

67

Abstract Model of MSG . 68
2 Module LOCAL

EndSendMessaze -
EXPR(SP:ProcessHandle, MH:MessHandle)
‘ BEGIN
DECL UserChannel:UserData LIKE SP.UserChannel;
3 MH. IsGeneric ->
BEGIN
DecodeGenericClass(MH.DestProcess.GenericClass);
MH.DestProcess =|> UserChannel;
END;
MH.Disposition =}> UserChannel;
SIGNAL(MH.Signal);
CHCLOSE (UserChannel);
Free(MH);
END;

StartReceiveMessaze <-
i EXPR(Op:0pCode, UserChannel:ChannelHandle, SP:ProcessHandle)
a BEGIN
DECL M:MessBlock; :
DECL MH:MessHandle; !
DECL Disposition:ReasonCode;
. M.DestProcess <- SP.Name;
E | . < Signal, Deadline >(MH) <i= User(hannel;
E | ConvertTimer(Op, M.Deadlin2);
. Disposition <- ReasonCode <<
BEGIN

IsValid(MH.Signal) #> "Signal given is invalid";

MH <- Allocate(MessHandle. M);

"Incomplete";

END;
Disposition =|> UserChannel; |
IsAbnornal(Disposition) => NOTHING;

| MH. UserChannel <~
: CHOPEN(MH.Dest ID <~ AssignTransactionID(MH) =}>
B UserChannel, "Qut", "Binary");
: EnQRaceiveMess(MH, SP);
END;

EndReceiveMessaze <-
EXPR(SP: ProcessHandle, MH:MessHandle)
BEGIN 1
DECL UserChannel:UserData LIKE 3P.UserChannel,
DecodeGenericClass(MH. SourceProcess.GenericClass);
< Text, SourceProcess, Disposition >(Md) =|> UserChannel;
s NOT MH.IsGeneric => (EncodeHandling(MH) =i> UserCaannel);
SIGNAL(MH.Siznal);
, Frea(MH); _
- . END; E

i e

Abstract Model of MSG 69
Module LOCAL

StartSendAlarm <-
EXPR(Op:0OpCode, UserChannel:ChannelHandle, SP:ProcessHandle)
BEGIN
DECL A:AlarmBlock;
DECL AH:AlarmHandle;
DECL Disposition:ReasonCode;
A.SourceProcess <- SP.Name;
< Alarm, DestProcess, Signal, Deadline >(A) <i=
UserChannel;
ConvertTimer(Op, A.Deadline);
Disposition <~ ReasonCode <<
BEGIN
IsValidSignal(A.Aignal) #> "Signal given is invalid";
AH <- Allocate(AlarmHandle, A);
"Incomplete";
END;
Disposition ={> UserChannel;
IsAbnormal(Disposition) => NOTHING;
AH.UserChannel <-
CHOPEN(AH. SourceID <~ AssignTransactionID(AH) =}>
UserChannel, "Qut", "Binary");
EnQOutputAlarm(AH, SP);
END;

EndSendAlarm <~
EXPR(SP: ProcessHandle, AH:AlarmHandle)

BEGIN
DECL Userthannel :UserData LIKE SP.UserChannel;
< Disposition >(AH) =1> UserChannel;
SIGNAL(AH.Sizgnal);
Free(AH);

END;

StartReceiveAlarm <-
EXPR(Op:0pCode, User(annel:ChannelHandle, SP:ProcessHandle)
BEGIN
DECL A:AlarmnBlock;
DECL AH:AlarmHandle;
DECL Disposition:ReasonCode;
A.DestProcess <- SP.Name;
< Signal, Deadline >(A) <i= UserChannzl;
ConvertTimer(0Op, A.Deadline);
Disposition <~ ReasonCode <X
BEGIN
IsValidSignal(A.Signal) #> "Signal given is invalid";
AH <~ Allocate(AlarmHandle, A);
"Inconplete"”;
END;
Disposition =|> UserChannal;
AH.UserChannel <-
CHOPEN(AH.DestID <~ AssiznTransactionID(AH) =i>
UserChannel, "Qut", "Binary");
EnQReceiveAlarn(A4, SP);
END;

Abstract Model of MSG
Module LOCAL e

EndReceiveAlarm <-
EXPR(SP: ProcessHandle, AH:AlarmHandle)

BEGIN
DECL UserChannel:UserData LIKE SP.UserChannel;
DecodeGenericClass(AH, SourceProcess .GenericClass);
< Alarm, SourceProcess, Disposition >(AH) ={> UserChannel;
SIGNAL(AH.Signal);
Free(Ad);

END;

AT

StartOpenConnection <-
EXPR(Op:0pCode, UserChannel:ChannelHandle, SP:ProcessHandle)
BEGIN
DECL C:ConnBlock;
DECL CH:ConnHandle;
DECL Disposition:RzasonCode;
i C.SourceProcess <~ SP.Name;
' < ConnID, ConaType, ConnDirection, ConnBytesize,
DestProcess, EndSignal, Signal, Deadline >(C) <i=
UserChannel;
ConvertTimer(Qp, C.Deadline);
Disposition <- ReasonCode <<
! BEGIN

(. IsValidHost(C.DestProcess.Host) +>
"Invalid host address in process name";
Assignlocal Socket(C.LocalSocket, 3P);
IsValidBytesize(C.ConnBytesize) #>
"Bytesize given is invalid";
CH <~ Allocate(ConnectionHandle, C);
"Incamplete";
END;
Disposition =|> UserChannel;
IsfAbnormal (Disposition) => NOTHING;

: CH <~
5 CHOPEN(CH. SourceID <~ AssignTransactionID(CH) =i>
UserChaanel, "Out", "Binary");
E | EnQoutputOpenConn(CH, SP);
Free(CH);
END;

EndOpenConnection <~
EXPR(SP: ProcessHandle, CH:ConnHandle)
BEGIN
1 DECL UserCnannel:UsarData LIKE 3P.UserChannel;
: IsAbnormal(CH.Disposition <- OpenDirectConnection(CH, SP))
EnQlutputCloseConn(CH, SP);

- < Disposition >(CH) =|> UserChannel;
: SIGNAL(CH.Siznal);

Free(CH);
: END;

(IsValidSignal(C.Signal) #> "Signal givan is invalid";

=>

RN

TR T T T

e — -

T T T P77, W Tl W o ey

Abstract Model of MSG
Module LOCAL

StartCloseConnection <-
EXPR(Op:OpCode, UserChannel:ChannelHandle, SP:ProcessHandle)
BEGIN
DECL C:ConnBlock;
DECL CH:ChannelHandle;
DECL Disposition:ReasonCode;
< ConnID, DestProcess, Signal, Deadline >(C) <i=
UserChannel;
ConvertTimer(Qp, C.Deadline);
Disposition <~ ReasonCode <<
BEGIN
IsValidSignal(C.Siznal) #> "Signal given is invalid";
CH <- Allocate((ChannzlHandle, C);
"Incomplete";
END;
Disposition ={> UserChannel;
IsAbnormal(Disposition) => NOTHING;
CH.UserChannel <-
CHOPEN(CH.SourceID <- AssignTransactionID(CH) =i>
UserChannel, "Qut", "Binary");
CH.SourceProcess <~ SP.Name;
EnQOutput CloseConn(CH, SP);
- END;

EndCloseConnection <-
EXPR(SP: ProcessHandle, CH:ConnHandle)

BEGIN
CH.Disposition <~ CloseDirectConnection(CH, SP);

DECL UserChannel:UserData LIKE SP.UserChannel;
< Disposition >(CH) =i> UserChannel;
Freelocal Socket(CH.Local Socket, SP);
SIGNAL(CH.Siznal);
CHCLOSE (UserChannel);
Free(CH);

END;

SvartTerminationSignal <-
EXPR(Op:OpCode, UserChannel:ChannelHandle, SP:ProcessHandle)
BEGIN
DECL T:TermBlock;
DECL TH:TermHandle;
DECL Disposition:ReasonCode;
ConvertTimer{(QOp, T.Deadline);
< Signal, Deadline >(TH) <.z UserChannel;
Disposition <~ R2asonCode <<
BEGIN
IsValidSignal(S) #> "Signal given is invalid";
TH <~ Allocate(TermHandle, T);
"Incomplete";
END;
Disposition =}> UsarChannal;
IsAbnormal(Disposition) => NOTHING;
TH.UserChannel <~
CHOPEN (NullTransactionID, "Qut", "Binary");
END;

7

o

S——

Abstract Model of MSG
Module LOCAL

EndTerminationSignal <-
EXPR(SP:ProcessHandle, TH:TermHandle)

BEGIN
DECL User(Channel:ChannelHandle LIKE SP.UserChannel;
< Disposition >(SP) ={> UserChannel;
SIGNAL(TH. Signal);
CHCLOSE (UserChannel);
Free(Td);
DoStopMe(SP);

END;

EndBrokenConnection <-
1

. An artifact. Th2 connection has been broken,
. SO is closed. The Op "StopMe" is posted
. and the CH delivered in such a way as to
. post the local process EndSiznal.' */
EXPR(Op:0pcode, SP:ProcessHandle, CH:ConnHandle)
BEGIN
DECL UserCnhannel :UserData LIKE SP.UserChannel;
SIGNAL(CH.EndSizgnal);
CHCLOSE (Usertnann2l) ;
Free(CH);
END;

—— e e e B S

72

Abstract Model of MSG 73
Module LOCAL ¢

DoStopMe <~
L

. Rascind pending events (OutputXXXQ, ReceiveXXXQ,
- Connections awaiting remote open)
o Close direct conrections.
. Kill off InputXXXQ and ConnectionS' #*/
EXPR(Op:OpCode, UserCaannel :CnannelHandle, SP:ProcessHandle)

DoRescind <- :

EXPR(Op:0OpCode, UserChannel:CnhannelHandle, SP:ProcessHandle)
3 BEGIN

DECL Event:TransactionID;

Event <= UserCnhannel;
DECL TH:TransactionHandle LIKE Seize(Evant);
RescindPendingEvent(TH, SP) =i{> TH.UserChannzl;
E | Free(TH);
- END;

DoAcceptAlarms <-
EXPR(Op:0pCode, UserChannel :ChannelHandle, SP:ProcessHandle)
SP.IAccept <}= UserChannel;

(DoRasynch <-
EXPR(Op:0OpCode, UserChannel:ChannelHandle, SP:ProcessHandle)
BEGIN
DECL P:ProcessNamne;
P <i{= UserChannsl;
FOREACH C IN SP.InhibitedDestS
i DO C.DestProcess = P => Remove(C, SP.InhibitedDestS) END;
’

| DoWhoAnI <-
\ EXPR(Op:OpCode, UserChannel:ChannelHandle, SP:ProcessHandle)
. ‘ SP.Name ={> UserChannel;

TRy

——T———

Abstract Model of MSG
Module LOCAL

' SERVERS R T

UserCallServer <-
EXPR(SH:ServerHandle)
BEGIN
DECL Op:0pCode;
DECL WaitS:Set(ChaanelHandle) LIKE SH.ChannelS;
REPEAT
DECL UserChannel:ChannelHandle LIKE AWAIT(Wait3);
DECL SP:ProcessHandle LIKE UszsrChannel.User;
Seize(SP);
iz UserChannel;
OpTable([Op](Op, UserChannel, SP);
Release(SP);
END;
END;

UserDel iveryServer <-
1]

! UserDeliveryServer waits until it is SIGNALed, then loups through
! its delivery qu=ue, removes entries and dispatches to the

! appropriate output routine. The entries are then dequeued.
!

]

%/
EXPR(SH:ServerHandle)
BEGIN
DECL QEntry:TransactionHandle;
DECL LP:ProcessHandle;
Seize(SH.DeliveryQ);
REPEAT
Null(SH.DeliveryQ) =>
BEGIN
SH.Running <- FALSE;
Release(SH.DeliveryQ);
WAIT({ SH.WakeUpSiznal });
Seize(SH.DeliveryQ);
END;
QEntry <- Seize(Front(SH.DeliveryQ));
Release(SH.DeliveryQ);
LP <- SeizeProcessHandle(Qriginator(QEntry));
EndOpTable[QEntry.0pl(LP, QEntry);
Release(LP);
Seize(SH.DeliveryQ);
DeQ(SH.DeliveryQ, QEntry);
Free(QEntry);
END;
END;

T4

e b ettt . - sl e

Abstract Mdel of MSG
Module LOCAL

' Miscellaneous routines ' ¥/ -;

StartGenericProcess <-
EXPR(Class:GenericClassCode; ProcessHandle)

BEGIN
DECL GH:GenericHandle LIKE GenericTable[Class];
DECL P:ProcessBlock;
P.Name.GenericClass <~ GH.Code;
DECL PH:ProcessHandle LIKE Allocate(ProcessHandle, P);
CompleteProcessNama(PH);
StartUserProcess(GH, PH);
PH;

END;

ConvertTimer <-
EXPR(Op:OpCode, Timer:Integer)
BEGIN
Timer = 0 -> Timer <~ TimerDefaults[Opl;
MaxeInterval Absolute(Timer);
END;

Originator <-
EXPR(TH: TransactionHandle; ProcessName)
CASE[TH.Op]

(" ReceiveGenericMessage"],
{"RaceiveSpecificMessaze"],
["ReceiveAlarm"] => TH.DestProcess;

TRUE => TH.SourceProcess;

END;

75

Abstract Model of MSG 76
Module QUEUE g

Rt it e

QUEUE: Queue Management Module for MSG

TV

Managemant routines for the data base shared among MSG processes.
This data base consists principally of queues and sets of
transaction records. Each record describes the state of a pending
event, a message, an alarm, or a direct connection. Most queues
and sets are associated with particular local user processes,

and are anchored in the corresponding process handles.

Routines exported by QUELE are called from the servers that implement
user process primitives (PRIM), from those that implement the
MSG-to-MSG protocol (PROT), and from the timer process (TIMER),
which implemants event timeouts.

The exports fall into three groups: those dealing with messages,
alarms, and direct connections.

Messagze handling routines:

EnQOutputMess SendSpecificMess, SendGenericMess primitives
EnQReceiveMess ReceiveSpecificMess, ReceiveGenericMess primitives
§ EnQInputMess MESS protocol item
! RecordMESS\OX MESS-OX protocol item
', RacordMESS\R=J MESS-REJ protocol item

RacordMESS\HCLD MESS-HOLD protocol item

RecordHOLD\JK HOLD-OKX protocol item

RecordMESS\CANCEL MESS-CANCEL protocol item

RacordXMIT XMIT protocol item

SendMESS\REJ Reject received MESS

SendMESS\CANCEL Cancel previously sent MESS

Alarm handling routines:

EnQOutputAlarm SendAlarm primitive
EnQReceiveAlarm ReceiveAlarm primitive
‘ EnQInputAlarm ALAR4 protocol item
: RecordALARM\OK ALARM-OK protocol item
Racord ALARM\REJ ALARM~REJ protocol item
SendALARM\REJ Reject received ALARM

Connection handling routines:

EnQlutputOpenConn OpenConn primitive
EnQOutputClosaConn CloszConn primitive

EnQInputOpenConn CONN-QPEN protocol item
EnQInputCloseConn CONN-CLOSE protocol item

RecordCONN\REJ CONV=-REJ protocol item

SendCONN\REJ Reject received CONN-OPEN or CONN-CLOSE

W D Lun ST SR VER (e SR Cum S CWD P D CEP (w D WD CER CUD CED D CED SuD CUP CaD CWD CuD CuD 0w WD WD SuD CUD CuD CuD AP Sup CUD CuD FUD CUD CuD VWP OUD (e CUR LED tud oem S @

*/ -

Abstract Model of MSG
Module QUEUE s

L]
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
L

Convantions observed in this module:
Local variables are declared by

<name> == <mode>
or <name> <{== <initial value>

These are equivalent to

DECL <name>:<mode>
and DECL <name>:ANY BYVAL <initial value>

respectively.

Whenever a shareable record (e.g., a MessHandle or a ProcessHandle)
is passed to a QUEUE routine, it is assumed that the caller has
locked ("Seize"d) the record, if necessary, and will be responsible
for unlocking it.

'l'/ -

7

.

Abstract Model of MSG
Module QUEUE

EnQOutputMess <-

M is an outgoing Mess from user process SP.

Charge SP for tn=s text buffer space used by M.

Divide Messes into two categories:

(1) those having specific destination hosts, and
(2) generic messes that are host-less.

If M is host-less, obtain a trial host and uss EnQHostSpecificMess
to try to deliver M. If M is rejected by the chosen host,
RecordMESS\REJ will select a new host and use SendHostSpecificMess
to send it again.

- 0ED ouD tem 0D D VD %0 0w S s o

*/
EXPR(M:MassHandle, SP:ProcessHandle)
BEGIN
DebitBuffer(SP, M);
M.IsGeneric AND Null(M.DestProcess.Host) ->
BEGIN
M.IsHostless <- TRUE;
M.DestP ocess.Host <- GetNewGenasricHost(M);
END;
StartTiming(M);
EnQHostSpecificMess(M, SP);
END;

GetNewGenericHost <-
L

! Find a destination host for M appropriate to its gzneric category.
! If its destination host is null, take the first possible host,

! otherwise take thz successor of the presant host. Return a null

: host code if the present host is the last in the list.

'

*®/
EXPR(M:MassHandle; HostCode)
BEGIN
OldHost <== M.DestProcess.Host;
GH <== Ga2nericTable[M.DestProcess.GznaricNanz];
Null(OldHost) => First(GH.HostS);
Next(GH.HostS, OldHost);
END;

78

e A A et asndh.

oy

Abstract Model of MSG
Module QUEUE

EnQHostSpecificMess <-

Check M for special handlinz requirements. If it is a sequenced or
stream-marked messaze, check for prior Messes that inhibit
transnission of M. A sequenced message must be held until all
previous sequenced Messesto the same destination have been
acknowledged. A stream-marked Mess must wait for all prior Messes
to the same destination to complete.

L7
EXPR(M:MessHandle, SP:ProcessHandle)
BEGIN
PostponaTransmission <== FALSE;
FOREACH PriorM IN SP.OutputMessQ
DO
PriorM.DestProcess = M,DestProcess AND
(PriorM.IsMarked OR M.IsMarked OR
M.IsSequenced AND PriorM.IsSeguenced) =>
PostponsTransnission <- TRUE;
END;
EnQ(SP.QutputMessQ, M);
PostponeTransnission =>
M.State <- "Awaiting prior MESS completion";
SendHostSpecificMess(M, SP);
END;

SendHostSpecificMess <-
'

! If destination is a local process, pass a copy of M directly to the
! handler for received Messes.

! Otherwise, it must go out on the network. Decide, based on current
! buffer space for SP, whether to offer to hold the Mess, to warn
!
!
!

]

that a hold will be impossible, or neither. Deliver it to the server

for the destination host.

*/
EXPR(M:MessHandle, SP:ProcessHandle)
BEGIN
M.DestProcess.Host = LocalHost =>

BEGIN
InputM <== CopyMessHandle(M);
EnQInputMess(InputM, SP);
Free(InputM);
END;
M.HoldOk <- SP.FreeBufferSiza GE HoldOkThreshold;
M.NoHold <- SP.FreeBufferSize LT NoHoldThreshold;
M.State <~ "Awaiting MESS-OK";
SendMESS(M) ;
END;

79

|
|
:
|

PRAEERS

e

Abstract Model of MSG
Module QUEUE

EnQReceiveMess <~

- oum s Ve saw o oam oem

DP is to be the destination of a message, for which it is issuing

a ReceiveMess cammand.

Input generic Messes and ReceiveGenericMess events are queued in the"F
! appropriate GenericTable entry. Therefore define DH to be either DP
! itself, if RM is specific, or the appropriate GenericHandle, if RM
represents a ReceiveGenericlfess.

If there are any queued input Messes at DH that are complete with

text (eitner accepted Messes or ones held by a local sender), take one,
merge it with R4, and deliver it to DP.

Otherwise, enqueua RM in DHs ReceiveMessQ, and start timing on RM,
using the interval supplied by the user process DP.

*®/
EXPR(RM:MessHandle, DP:ProcessHandle)
BEGIN
MR == MessHandle;
DH <&==
BEGIN
NOT RM.IsGeneric => DP;
Seize(GenericTable{DP.Nane.GenericNane]);
END;
BEGIN
FOREACH M AT MLocation FromFrontOf DP.InputMessQ
DO
NOT Null(M.Text) =>
[) MR <~ M; Seize(MR); DeQAt(MLocation) (];
END;
NOT Null(MR) =>
BEGIN
StopTiming(MR);
MR.SourceProcess.Host = LocalHost =>
LocalXMIT(MR, Dd);
MergeMessHandles(R4, MR);
Free(MR);
RM.Disposition <~ "Normal";
Deliver(RM, DP);
CreditBuffer(DH, R4);
END;
EnQ(DH. RaceiveMessQ, R1);
RM,State <~ "Awaiting MESS";
StartTiminz(R4);
END;
RM.IsGeneric -> Release(DH);
END;

80

B T L Vg mmIr v Sy

B Py Y NU Ay T SET o

i
{
4
!
|

Abstract Model of MSG
Module QUEUE

LocalXMIT <-
1]

! M represents a local Mess transaction. M has been held in the
! source process (SP) queue. Now it is to be "transmitted" to the
! destination (DH), simulatinz a network XMIT followed by a MESS
! retransmnission.
! Debit DH and credit SP for the text-buffer space.
! Complete the transaction for the sender by accepting the message.
Y o
EXPR(M:MessHandle, DH:DestHandle)
BEGIN
SP <== SeizeProcessHandle(M.SourceProcess);
DebitBuffer(DH, M);
CreditBuffer(SP, M);
AcceptMess(M, SP);
Release(SP);
END;

RequestTransmission <-
]
! Mrepresents a Mess to DH that is being held by its sender,
! but is now to be retransmitted.
! If the sender is remote, send it an XMIT item.
! Otherwise, use LocalXMIT
]

] */
EXPR(M:MessHandle, DH:DestHandle)
BEGIN
M.SourceProcess.Host = LocalHost => LocalXMIT(M, DH);
SendXMIT(M);
CommitBuffer(DH, M);
END;

31

S — - - e ——————— - -t — < - R S R il e e

Abstract M>del of MSG
Module QUEUE ¢

EnQInputMess <~

The nazation of M.QJait is ORed into M.NoHold in case M is gzeneric.
Thus M.NoHold indicates refusal to hold M at the source, for whatever
reason.

Input Messes are distinguished as "old" (those sent in response
to an XMIT request) or "new'. Old Messes are recognized by their
non-null destination IDs.

(SP represents the sender of M, if the sender is local.)

%/
EXPR(M:MessHandle, SP:ProcessHandle)
BEGIN
M.NoHold <- M.NoHold OR NOT M.QWait;
NOT Null(M.DestID) => EnQldInputMess(M);
EnQNewlInputMess(M, 3P);
END;

EnQNewInputMess <-

NewM is a newly received Mess.

SP is the sender of NewM, if local. Otherwise, SP is null.

Define DH to be the destination process handle (if NewM is specifically
addressad) or the appropriate generic class handle (if NewM is generic).
In the latter casz, if there is no process with a pending Receive=-
GenericlMess primitive, try to start a naw process of the right class.

Enqueue NewM in DH.InputMessQ if there is room.

Assign a local transaction ID for future refarence.

Decide whather to deliver NewM, to accept it pending a local Rece1ve,
to ask the sender to hold it, or to reject it.

*/
EXPR(NewM:MessHandle, SP:ProcessHandle)
BEGIN
DH <== SelzeDestHandle(Veww DestPro.ess),
Null(D{) =
RejectMess(NewM,
BEGIN
NewM. IsGeneric =>
"That genaric class not supported here";
"Destination process unknown';
END, SP);
BEGIN
Null(DH.ReceiveM:ssQ) AND NewM,IsGeneric =>
StartGenericProcess(DH.Code);
IsFullQ(Di. InputMessQ) =>
RejectMass(NawM,
"I?sufficient resourcas to complete command",
SP);
EnQ(DH. InputMessQ, NewM);
awM,.DestID <~ AssiznTransactionID(NawM);
AcceptHoldOrRajectMess(NawM, DH, SP);
END;

R:lease(DH);
END;

Abstract Model of MSG 33
Module QUEUE :

EnQQldInputMess <-
]

NewM has been sent in response to an XMIT.
Use NewMs destination ID to find the original MessHandle (OldM).
If none can be found, or if OldM is the wrong transaction, simply
treat NewM as a new incoming Mess. (The original could have timed out.)
Otherwise, merge NewM into OldM, copying the Text, HoldOk, and
NoHold fields, among others.
Let DH be the destination of OldM.
Decide how to dispose of OldM using the same algorithm as for
new input Messes.

®/
EXPR(NewM:MessHandle)
3 BEGIN
01dM <== SeizeTransaction(NewM.DestID);

E | BEGIN
a Null(0l1dM) OR NOT IsMessHandle(OldM) OR
2 NOT ValidXMITResponse(NewM, OldM) =>

EnQNawInputMass(NawM);
StopTiminz(O1ldM);
MergeMessHandles(OldM, NewM);
DH <= SeizeDestHandle(OldM.DestProcess);
{ RemitBuffer(DH, M);
. AcceptHoldOrRejectMess(OldM, DH);

Release(DHd);

END;

Release(QldM);
END;

Ciie e i
@ tum taD cam W WD WD S D s o

ValidXMITResponse <-
EXPR(NewM:MassHandle, OldM:MessHandle; BOOL)
OldM.State = "Awaiting retransmission" AND
NewM.SourceProcess = 0ldM.SourceProcess AND
NewM. Dest.Process = OldM.DestProcess AND
NewM.SourceID = 01dM.SourcelD;

Ty

Abstract Model of MSG 84
Module QUEUE

AcceptHoldOrRejectMass <=~
L]

! Mis an input Mess for destination DH, which is either a GenericHandle
! (if M is generic) or a ProcessHandle (if M is specific).
! SP is the sendinz process, if local to this host; otherwise null.
! M has been entered in DH. InputMessQ.
! Possible outconmes:

! M will be accepted and delivered.
! Mwill be accepted and queuzd.
! The sender will be asked to buffer M and retransmit later.
! Mwill ba rejected.
! If the Text of M has been omitted for lack of sufficient temporary
! buffer space, then eithar request hold or reject.

! Else if a matching ReceiveMess primitive is pending, accept and

! deliver M.

! Else if buffer space permits, accept M and leave it queue pending
! the execution of a local ReceiveMess primitive.

! Otherwise, either reject M or request that the sender hold it.

!
L}

*®/
EXPER:(M:MessHandle, DH:DestHandle, SP:ProcessHandle)
BEGIN
Null(M.Text) => HoldOrRejectMess(M, D4, SP);
RM <== SeizeMatchingReceiveMess(M, [H);
_NOT Null(RM) =>
BEGIN
StopTiming(RMY);
DeQ(DH. InputMessQ, M);
MergeMessHandles(RM, M);
AcceptMess(M, SP);
BEGIN
NOT RM.IsGeneric => Deliver(RM, DH);
DP <== SzizeProcessHandle(R4.DestProcess);
v Deliver(M, DP);
1 Release(DP);
END;
Release(RY);
END;
NOT RoomToAccept(M, DH) => HoldOrRzjectMess(M, DH, SP);
AcceptMess(M, SP);
DebitBuffer(Dd, M);
M.State <- "Awaiting ReceiveMess";
2 StartTiming(M, A~aitingReceivelnterval);
ND;

Abstract Model of MSG 35
Module QUEUE

HoldOrRejectMess <-
1]

!
!
!
!
!
!
!
!
!
!
!
!
!
L]

M is an input Mess for destination DH, which is either a GenericHandle
(if M is generic) or a ProcessHandle (if M is specific).

SP is the sendin3 process, if local to this host; otherwise null.

M has been entered in DH. InputMessQ.

If M requires an immediate acceptance decision, reject it.

If M represents a strictly local transfer, make the decision on holding
here: hold if the sender has enough buffer space, otherwise abort the
transfer. i
(Note that in computing SourceM, the original output MessHandle,

we have no need to Seize the record: the calling path will already
have dona so.)

Otherwise, send a MESS-HOLD to the sender of M.

%/
EXPR(M:MessHandle, DH:DestHandle, SP:ProcessHandle)
BEGIN
M.NoHold =>
BEGIN
DeQ(DH. InputMessQ, M);
RejectMess(M,
"Insufficient resources to complete command",
SP);
END;
NOT Null(3P) =>
BEGIN
NOT RoomToHold(SP, M) =>
BEGIN
DeQ(DH. InputMessQ, M);
RejectMess(M,
"Insufficisnt resources to complete camnand",
SP);
END;
SourceM <=z LookupTransaction(M.SourcelD);
SourceM.State <- "Awaiting XMIT";
M.State <- "Held by sender";
StartTiming(M, AwaitingFreeBufferInterval);
END;
M.Text <- NullText;
SendMESS\HOLD(M) ;
BEGIN
M.State <- "Held by sender";
StartTiming(M, AwaitingFreeBufferInterval);
END;
M.State <~ "Awaiting HOLD-OK";
StartTiming(M, AwaitingzHOLD\OKInterval);
END;

- oD tum o ow sem

!
!
!
!
!
!
'

Abstract Model of MSG
Module QUEUE

SeizeMatchingReceiveMess <-
]

SeizaDestHandle -
1]

MergeMessHandles <-
1

M is an incoming Mess for DH.

If DH has a pending Receive that will match M,
seize, dequeue, and return it.

Else, return nil.

*/
EXPR(M:M2ssHandle, DH:DestHandle; MessHandle)
BEGIN :
Null(DH.ReceiveMessQ) => NullMessHandle;
RM <== Front(DH.ReceiveMessQ);
Seize(RM);
DeQ(DH. ReceiveMessQ);
RM;
END;

Return a suitable destination handle for the Ziven process name P.

If P is a generic name, and its class is supported on the local host,
return the corresponding genaric handle.

If P is a valid specific process, return its handle.

Otherwise, return a null handle.

*®/
EXPR(P:ProcessName; DestHandle)
BEGIN
NOT Null(P.Instance) => SeizeProcessHandle(P);
DH <== Seize(GenericTable[P.GenericName]);
NOT DH.Unsupported => DH;
Release(DH);
NullDestHandle;
END;

M represents a newly received Mess.

RM is eithar a ReceiveMess record or the result of an =arlier
transmission of M.

Copy the Text of M into RM, as well as other fields which might
be different on retransmission.

*/
EXPR(R4:M2ssHandle, M:MessHandle)
BEGIN
R4.NoHold <~ M.NoHold;
RM.HoldOk <- M.Holdlk;
RM.SourceProcess <- 1.SourceProcess;
RM.TextLength <- M.TextLenzth;
RM.Text <- M.Text;
END;

Abstract Model of MSG
Module QUEUE

AcceptMess <-
1]

! If SP is non-null, then M represents an intrahost Mess and SP is

! the source process. In that case, simulate a MESS-OK acknowledgzement
! of M for SP. (It is unnecessary to seizs the original

! MessHandle. The calling path has it locked.)

! Otherwise, send a MESS-OK to the remote source of M.

!

'

*/
EXPR(}M:MessHandle, SP:ProcessHandle)
BEGIN
Null(SP) => SondMESS\OK(M);
AcceptOutputMess(LookupTransaction(M.SourceID), SP);
END; :

RejectMess <-
)
! If SP is non-null, then M represents an intrahost Mess and SP is
the source process. In that case, simulate a MESS-RZJ acknowledzement
of M for SP. (It is unnscessary to s2iz2 the original
MessHandle. The calling path has it locked.)
Otherwise, send a MESS-REJ to the remotes source of M.

- ™ cam s S s

%/
EXPR(M:MassHandle, Reason:ReasonCode, SP:ProcessHandle)
BEGIN
Null(SP) => SendMESS\REJ(M, Reason);
RejectQutputMess(LookupTransaction(M.SourcelID), Rz2ason,

END;
CancelMess <~
A

! M is an outgoing Mess from SP that is awaiting XMIT, but must be

! canceled for lack of buffer space.

! If the destination is local, simulate raceipt of a MESS-CANCEL by

! the destination. Ctharwise, send a real MESS-CANCEL on tha network.
! Then abort the SendMess primitive of SP.

]

1]

*/
EXPR(M:MassHandle, SP:ProcessHandle)
BEGIN
M.Reason <~ "Insufficient resources to complete command";
BEGIN

M.DestProcess.Host = LocalHost =>
RecordMESS\CANCEL (Value(M));
SendMESS\CANCEL(M, M.Resason);
END;
RejectOutputMess(M, M.Reason, SP);
END;

87

Abstract Model of MSG
Module QUEUE

RecordMESS\OX <-

’

A MESS-OK has come in for MOK.SourceProcess. If no corresponding
transaction can be found, simply do nothing. Otherwise, complete
the designated pending event.

L4
EXPR(MOK:MessBlock)
BEGIN
OldM <== SeizeTransaction(MOK.SourcelD);
Null(0ldM) OR MessMismatch(OldM, MOK) =>
/% 'Could have timed out';
OldM.State # "Awaiting MESS-OK" =>
MSGError('MESS-OK received in wrong state');
SP <= SeizeProcessHandle(MOK.SourceProcess);
AcceptOutputMess(OldM, SP);
Release(OldM);
Release(SP);
END;

RecordMESS\REJ <-
1]

A MESS-RZJ has come in for MR.SourceProcess. If no corresponding
transaction can be found, simply do nothing. Otherwise, abort
the designated panding event, giving MR.Reason as the error code.

*/
EXPR(MR:MassBlock)
BEGIN
OldM <== SeizeTransaction(MR.SourcelD);
Null(OldM) OR MessMismatch(OldM, MR) =>
/* 'Could have timed out';
SP <= SeizeProcassHandle(}MR.SourceProcess);
RejectOutputMess(0ldM, MR.Reason, SP);
Release(OldM);
Release(SP);
END;

83

—

Abstract Model of MSG
Module QUEUE

AcceptOutputMess <-
]

M, a Mess sent by SP, has been accepted at its destination.
Canplete M, and transmit any subssquant Messes from SP to M.DestProcess
that may have been blocked pendini acknowledgement of M.
Scan SPs queue of output Messes from least recent to most recent.
Ignore Messes to other destinations.
When M is found, delete it from the qu2ue, but continue to scan
for later Messes, QM, which are waitinz to be sent.
If M is found, and is marked, terminate the search, and send it if
removal of M nas unblocked it. Any later Messes remain blockad by QM.
If QM exists and is sa2quenced, its treatment depsnds on M.Handling:
If M.IsSequenced, Q4 must now be unblocked. Send Q4 and stop scanaing.
If M.IsMarked, sand QM if it is now unblocked, but continue to scan
for newly unblocked Messes.
Otherwise, simply terminate the scan: removal of M has not unblocked
QM, and any later Messes that might have been blocked by M are
also blocked by QM.
After the scan, copy the destination process name into M in case it
was a generic Mess, deliver M to SP, and credit SP with the space
being freed.

®/
EXPR(M:MessHandle, SP:ProcessHandle)
BEGIN
MFound <== FALSE;
PriorMesses <z= FALSE;
PriorSequencedMesses <=z FALSE;
TerminateScan <=z FALSE;
FOREACH @1 AT QMLocation FromFrontOf SP.OutputlessQ

DO
MatchingProcessNames(QM.DestProcess, M.DestProcess) =>
BEGIN
NOT MFound =>
BEGIN

QM # M => PriorMesses <- TRUZ;
MFound <- TRUE;
StopTiming(M);
DeQAt (QMLocation);
END;
QM.State # "Awaiting prior MEZSS completion" =>
PriorMesses <~ TRUE;
QM. IsMarkad =>
BEGIN
NOT PriorMesses =>
SendHostSpecificMess(d, SP);
TerminateScan <- TRUE;
. END;

Abstract Model of MSG
Module QUEUE

b

Q. IsSequenced =>
BEGIN
M.IsSequenced =>
BEGIN
SendHostSpecificMess(QM);
TerminateScan <- TRUE;
END;
NOT M.IsMarked => TerminateScan <- TRUE;
PriorSequencedMesses =>
/% 'QM remains blocked';
SendHostSpacificMess(QM);
PriorMesses <- PriorSequencedMesses <- TRUE;
END;
ASSERT(M. IsMarked) /% ' QM cant be blocked by a marked Mess
! between Q1 and M or els2 thes scan
! would have terminated by now. ';
SendHostSpecificMess(QM, SP);
E PriorMesses <- TRUE;
E | END;
E TerminateScan =>
/* 'Later blockad messes remain blocked';
END;
M.Disposition <- "Normal";
M.DestProcess <- DestProcess;
i Deliver(M, SP);
CreditBuffer(SP, M);
END;

Abstract Model of MSG 91
Module QUEUE

RejectQutputMess <-

Purpose:
A Mess M fram SP has been rejected by M.DestProcess. If M was originally s
a generic Mess without a specified destination host, try to find an
alternate host for it. If successful, sand it out azain., Otherwise,

abort M, and either abort or transnit subsequent Messes from SP
to M.DestProcess that have been blocked pending acknowledgement of M.

Method:

Scan SPs queue of output Messes from least recent to most recent. 1
Ignore Messes to othar destinations. 1
when the Mess M corresponding to SourcelD is found, either (1) send it to

a new host (if it was originally hostless), or (2) abort M,

but continue to scan for later Messes, QM, which are blocked

pendinz completion of earlier ones.

If such a QM is found, treat it as follows:

If M.IsMarked, all subsequent Messes are to be aborted, so abort QM.
Else if QM.IsMarked, it may now be unblocked. If so, send it.

Else if both M and QM are sequanced, adbort QM; all sequenced Messes
subsequent to M will be aborted until ths user process Resynchs.
Otherwise, M was not blocking M, so it remains blocked.

If M has no special handling, the scan can be terminated after the first
such Q4 has been seen.

NoDeliver will be TRUE iff SP is terminating; doat deliver anything to it.

@ CED CUD CED D CED GuD WD CED LD CUD CED CED CuD CuD CUD CED CWP CED CUD SUD CuD U Sud »

&/
EXPR(M:MassHandle, : 3
Reason:ReasonCode,
SP:ProcessHandle,
NoDeliver:BOOL)
BEGIN
MFound <== FALSE;
PriorMesses <== FALSE;
TerminateScan <== FALSE
FOREACH Q4 AT Q&Locatxon FromFrontOf SP. OutputMessQ

DO
MatchingProcessNames(QM.DestProcess, DestProcess) ->
BEGIN
NOT MFound =>
BEGIN

T

Q1 # M => PriorMesses <- TRUE;
MFound <~ TRUE;
NOT M.IsHostless =>
AborcMess(M, QMLocation, SP, Reason);
‘ M.DestProcess.Host <- GatNawG nﬁrchost(M)
: Null(M.DestProcess.Host) =>
AbortMess(M, Qilocation, SP,
"Refused by all suitable hosts");
SendHostSpacificMess(M, SP);
TerminateScan <- TRUE;
END;

b B Lk idia dE Rl g

Abstract Model of MSG
Module QUEUE

QM.State # "Awaiting prior MESS completion" =>
PriorMesses <- TRUE;

M.IsMarked =>
AbortMess(QM, MLocation, SP,

"Failure of prior stream marked messaze");
TerminateScan <- M.Handling = "Normnal";
QM.IsMarked =>

BEGIN
NOT PriorMesses =>
SendHostSpecificMess(QM, SP);
PriorMesses <- TRUZ;
END;
NOT (QM.IsSequencad AND '.IsSequanced) =>
ASSERT(PriorMesses) /¥ 'M wasnt blocking Q4';
AbortMess(QM, QMlocation, SP,
"Failure of prior sequenced message");

END;
TerminateScan =>
/% 'Later blocked messes remain blockad';

END;
END;

AbortMess <-
EXPR(M:MessHandle,
QP:uaueEntryPointer,
SP: ProcessHandle,
Reason: RzasonCode,
NoDeliver:BOOL)
BEGIN
StopTiming(M);
DeQAt(QP);
M.Disposition <- Reason;
CreditBuffer(SP, M);
M.Text <- NullText;
NOT NoDeliver -> Deliver(M, SP);
END; g

.

Abstract Model of MSG
Module QUEUE

RecordMESS\HOLD <-
L}

! A MESS-HOLD iten has arrived.
! Look for the transaction, OldM, desiznated. If it cant be found, send a

MESS-CANCEL. 01dM may have timed out or been Rescinded.

Check for correct traansaction state.
See whather there is room to hold OldM. If not, send MESS-CANCEL.

If so, send HOLD\OK, unless that was implicit in the original MESS
transmission.

- tem oD o owm o s

#/
EXPR(MH:MessBlock)
BEGIN
0ldM <=z SeizeTransaction(MH.SourcelD);
Null(OldM) =>
AnswerBelated Item(MH, "MESS-CANCEL",
"Destination process unknown");
BEGIN
IsMessHandle(01dM) AND Null(OldM.DestID) ->
01dM.DestID <~ MH.DestID;
MessMismatch(OldM, MH) =>
MSGError('Transaction mismatch');
Ol1dM.State # "Awaiting MESS-OK" =>
MSGError('MESS-HOLD received in wrong state');
SP <== SeizeProcessHandle(0ldM.SourceProcess);
BEGIN
SP.FreeBufferSize GE MinMessHoldTnreshold =>
BEGIN
Ol1dM.State <- "Awaitinz XMIT";
5 NOT OldM.Holdk -> S2ndHOLD\OX (O1dM);
ND;
RejectOutputMess(SP, OldM.SourcelID, OldM.DestProcess,
"Insufficient resources to complete command");
SendMESS\CANCEL (O1dM, i
"Insufficient resources to complete command");
END;
Release(SP);
END;
Release(01dM);
END;

93 I

P

b el i

Abstract Model of MSG
Module QUEUE iy

RecordHOLD\OK <-

A HOLD\OK item has arrived.

If the designated transaction has timed out, invite the sender to
retransnit (XMIT).

Otherwise, be sure that HOLD\OK is expected.

Let DH denote the destination, waethar generic or specific.

If DH now has room for the Mess, raquest retransmission oy ssnding XMIT.
Otharwise, leave the transaction in th2 "Held by sender" state, waiting
for buffer space to become available.

%/
EXPR (HOK:MessBlock)
BEGIN
OldM <=z SeizeTransaction(HOK.D2stID);
Null(OldM) => AnswerBelatedItem(HOK, "X4IT");
BEGIN
MessMi snatch(OldM, HOK) =>
MSGError('Transaction misnatch');
OldM.State # "Awaiting HOLD-OL" =>
MSGError('HOLD-OX in wrong state');
StopTiming(01dM);
DH <== SeizeDestHandle(OldM.DestProcess);
BEGIN
DH.FreeBufferSize GE XMITThreshold =>
BEGIN
OldM.State <- "Awaiting retransmission";
StartTiming(0ldM, AwaitingRetransmissionInterval);
SendXMIT(O1ldM);
END;
Ol1dM.State <~ "Held by sender";
StartTiming(OldM, AwaitingFreeBufferInterval);
END;
Release(DH);
END;
Release(OldM);
END;

94

s T ks e Mg

(g

Abstract Model of MSG 95
Module QUEUE

RecordMESS\CANCEL <-
*

! A MESS\CANCEL iten has arrived.

! If the transaction it desiznates does not exist, just iznore it.

! Check the validity of the transaction state, then delete its record from
! the appropriate InputMessQ.
!
L

®/
EXPR(MC:MessBlock)
BEGIN
0ldM <= SeizeTransaction(MC.DestID);
Null(OldM) => /* 'Ignore belated MESS-CANCEL';
BEGIN
MessMismatch(OldM, MC) =>
MSGError('Transaction mismatch');
OldM.State # "Awaitinz HOLD~OK"™ AND
OldM.State # "Held by sender" AND
0OldM.State # "Awaiting retransmission" =>
MSGError('MESS-CANCEL received in wrong state');
StopTiming(01dM);
DH <== SeizeDestHandle(OldM.DestProcess);
DeQ(DH. InputMessQ, OldM);
Free(01dM);
Release(DH);
END;
Release(0ldM);
END;

Abstract Model of MSG : 96
Module QUEUE

RecordXMIT <-
L}
An XMIT request has arrived.
If the designated transaction has timed out, MESS-CANCEL will already
have been sent, so ignore the XMIT.
Otherwise, after checking the transaction state, retransmit the held Mess.

- sem o= oum 0w oum

®/
EXPR(XM:MassBlock)
BEGIN
01dM <== SeizeTransaction(XM.SourcelD);
Null(0ldM) => /* 'Iznore belated XMIT';
BEGIN
MessMi smatch(OldM, XM) =>
MSGError('Transaction mismatch');
OldM.State # "Awaiting XMIT" =>
MSGError('XMIT received in wrong state');
0ldM. State <- "Awaiting MESS-0K";
SendMESS(01dM) ;
END;
Release(01dM);
END;

AnswerBelatedItem <-
EXPR(MB:MessBlock, Command:ProtocolCode, Reason:ReasonCode)
BEGIN
M <== Allocate(MessHandle, M);
M.ProtocolCommand <- Command;
M.Reason <~ Rzason;
DeliverToRemoteHost(M,

BEGIN
Command = "MESS-CANCEL" =>
M.DestProcess.Host;
M.SourceProcess.Host;
END);
Free(M);
END;

MessMismatch <~
\J

! OldM is an existing transaction; NewM is a new protocol item.
! Return TRUE iff NewM refers to the same transaction as QOldM.
!
|l/
EXPR(O1dM:MessHandle, NawM:MessBlock; BOOL)
OldM. SourceID # NewM.SourceID OR OldM.DestID # NewM.DestID OR
0ldM. SourceProcess # NawM.SourceProcaess CR
0ldM.DestID # NewM.D2stID;

Abstract Model of MSG
Module QUEUE

DebitBuffer <-

]

! Charge the space for M.Text to its destination D, which is either
! a specific process or a generic category.

! If D is a specific process and free space has dropped below the

! minimun desirable level, cancel held Messes until enouwgh buffer
! space is reclaimed.

!

]

%/
EXPR(D:DestHandle, M:MessHandle)
BEGIN
D.FreeBufferSize <~ D.FreeBufferSize - M.TextLength;
IsProcessHandle(D) ->
FOREACH 0OldM IN D.OutputMessQ
DO
D.FreeBufferSize GE MinMessHoldThreshold =>
/% '"No need to cancel further held Messes';
OldM.State = "Awaiting XMIT" ->
CancelMess(01dM, D);
END;
END;

CreditBuffer <=~
L}

! Credit the space for M.Text to its destination D, which is either
! a specific process or a gensric category.

! If free spacz now permits buffering additional Messes,

! request transnission of any beinz held by their senders

! until VirtualFreaSpace drops below a desirable minimum.
t

|

%/
EXPR(D:DestHandle, M:MessHandle)
BEGIN
D.FreeBufferSize <- D.FrezBufferSize + M.TextlLenzgth;
FOREACH 01dM IN D.OutputMessQ
DO
VirtualFreeSpace(D) LT RequestXMITThreshold =>
/* 'No room to requast further transnissions';
OldM.State = "Held by sender" ->
RequestTransnission(0ldM, D);

97

A A8 A it 1

i st < e e 4. et

e e g dn

Abstract Model of MSG
Module QUEUE

VirtualFreeSpace <-
EXPR(D:DestHandle; Integer)
D.FreaBufferSize - D.CommittedBufferSpace;

CommitBuffer <-
L}

! Try to hold some of Ds buffer space for a Mess M known to be coming.
!
] l‘/
EXPR(D:DestHandle, M:MessHandle)
D.CommittedBufferSpace <-
D.CommittedBufferSpace + M.TextLength;

RemitBuffer <-
]
! Inverse of CommitBuffer.
!
[] l/
EXPR(D:DestHandle, M:MessHandle)

D.CommittedBufferSpace <-
D.CommittedBufferSpace - M.TextLength;

Abstract Model of MSG
Module QUEUE

. - = -

!

! Send message-related protocol itens to a remote MSG instance.
!

LR ¥ -

SendMESS <-
EXPR(M:MessHandle)
BEGIN
M.ProtocolCommand <- "MESS";
Deliver ToRemotehost(M, M.DestProcess.Host);
END;

SendMESS\OK <-
EXPR(M:MessHandle)
BEGIN
M.ProtocolCommand <- "MESS-0X";
DeliverToRemoteHost(M, M.SourceProcess.Host);
END;

SendMESS\REJ <-
EXPR(M:MassHandle, Reason:ReasonCode)
BEGIN
M.ProtocolCommand <- "MESS-REJ";
M.Reason <- Reason;
DeliverToRamoteHost(M, M.SourceProcess.Host);
END; .

SendMESS\ CANCEL <-
EXPR(M:MessHandle, Reason:ReasonCode)
BEGIN
M.Protocol Cotmmand <- "MESS-CANCEL";
M.Reason <~ Reason;
DeliverToRemoteHost(M, M.DestProcess.Host);
END;

SendMESS\HCLD <-
EXPR(M:MessHandle)
BEGIN
M.ProtocolCommand <~ "MESS-HOLD";
Deliver ToRemoteHost(M, M.SourceProcess.Host);
END;

SendXMIT <-
EXPR(M:MassHandle)
BEGIN
M.ProtocolConmand <- "XMIT";
Deliver ToRemoteHost(M, M.SourceProcess.Host);
END;

99

Abstract Model of MSG

EnQQutpucAlarm <-
'

! A represents an alarm sent by process SP.

! If the destination process is local, make a record for the
! input and call EnQInputAlarm directly.
]

'

®/
EXPR(A:AlarmHandle, SP:ProcessHandle)
BEGIN
A.State <- "Awaitinz ALARM-OK";
Insert(SP.OutputAlarmS, A);
StartTiming(A);
A.DestProcess.Host # LocalHost => SendALARM(A);
InputA <== CopyAlarmHandle(4);
EnQInputAlarm(InputA, SP);
Free(InputA);
END;

EnQRaceiveAlarn <-
1

! RA represents a ReceiveAlarm (called "Enable alarm" in the MSG Design
Y Specification) primitive issued by process DP.

! If no matching ALARM item has yat arrived, engueue RA and set its

! timer.

! If ALARMs have bzen accepted, take the first, AR, out of the queue

! and merge it with RA. Complete the ReceiveAlarn successfully.

!

'

®/
EXPR(RA:AlarnHandle, DP:ProcessHandle)
BEGIN
Null(DP.InputAlarmQ) =>
BEGIN
EnQ(DP.RaceiveAlarm]);
RA.State <- "Awaiting ALARM";
StartTiming(RA);
END;
AR <== Front(DP.InputAlarmQ);
Seize(AR);
StopTiminzg(AR);
DeQ(DP. InputAlarmQ, AR);
MerzeAlarmHandles(RA, AR);
Free(AR);
Deliver(RA, DP);
END;

- s —

Abstract Model of MSG
Module QUEUE

EnQInputAlarm <-
]

- uD sem Cup Cem WD sum s e

A represents an input ALARM item.

SP represants the source process, if local. Otherwise, it is null.
Reject A if its destination process, DP, cannot be found or if it is
not accepting alarms.

If DP has issued a RaceiveAlarm, RA, that is pendinz, then accept A
and merge it with RA to conplete the Receive.

If there is no peandinz Receive, but DPs input alarm queue has room,
accept A and queue it.

Otherwise, reject A because of the full input queue.

*/
EXPR(A:AlarmHandle, SP:ProcessHandle)
BEGIN
DP <== SeizeProcessHandle(A.DestProcess);
Null(DP) =>
RejectAlarm(A, "Destination process unknown", SP);
BEGIN
NOT DP.IAccept =>
RejectAlann(A,)“Process not accepting alarms now",
SP);
Null(DP.RaeceiveAlarmQ) =>
BEGIN
IsFullQ(DP. InputAlarmQ) =>
RejectAlarm(A,)"Alarm queue for process is full",
SP);
AcceptAlarm(A, SP);
A.State <- "Awaiting ReceiveAlarm";
EnQ(DP. InputAlarmQ, A);
StartTiminz(A, A~aitinzReceivelnterval);
END;
AcceptAlarn(A, SP);
RA <=z Front(DP.ReceiveAlarm);
Seize(RA);
StopTiming(RA);
DeQ(DP.RaceiveAlarmQ, RA);
MergeAlarmHandles(RA, A);
Deliver(RA, DP);
END;
Release(DP);
END;

Abstract Model of MSG
Module QUEUE

MergeAlarmHandles <-
]

! RA represents a ReceiveAlarm primitive into which the information
in A, an input alarm, must be merged, so that RA can be delivered.

!
!
LR ¥4
EXPR(RA:AlarmHandle, A:AlarmHandle)
BEGIN
RA.Alarn <- A.Alarm;
RA.SourceProcess <- A.SourceProcess;
RA.Disposition <- "Normal";
END;

Record ALARMNOK <-
]

! AOCK represants an ALARM-OK item.
! Find and complete the corresponding SendAlarm event.
'
l!/
EXPR (AOK: AlarmBlock)
BEGIN
A <== SeizeTransaction(AOK.SourcelD);
Null(A) OR NOT IsAlarmHandle(A) OR
A.DestProcess # AOK.DestProcess =>
/% 'SendAlarm may have timed out’';
SP <=z SeizeProcessHandle(A.SourceProcess);
Remove(SP.OutputAlarmS, A);
A.Disposition <- "Normal";
Deliver(A, 3P);
Release(SP);
REL(A);
END;

RecordALARM\REJ <-
1]

! AR represants an ALAR4Y-RZJ item.

! Find and abort the corresponding SendAlarm event.
! ;

]

*/
EXPR(AR:AlarmBlock)
BEGIN
A <== SeizeTransaction(AR.SourcelD);
Null(A) OR NOT IsAlarmHandle(A) OR
A.DestProcass # AR.DestProcess =>
/* 'SendAlarin may have timed out';
3P <== SeizeProcessHandle(A.SourceProcess);
Ramove{SP.QutputAlarnS, A);
A.Disposition <- AR.Reason;
Deliver(A, SP);
Release(SP);
Releasa(A);
END;

i
|
!

- Sl o

Abstract Mddel of MSG
Module QUEUE

AcceptAlarm <-
'

! A represents an input Alarm to be accepted.

! SP is the source process, if local; otherwise it is null.
! If the sender is remote, send an ALARM-OK.

! If local, find and conplete the original SendAlarm event.
! It is unnecessary to seize SourceA: the calling path

! has it already.
!

]

&/
EXPR(A:AlarinHandle, SP:ProcessHandle)
BEGIN
Null(SP) => SendALARM\OK(A);
SourceA <== LookupTransaction(A.SourcelD);
DeQ(SP.QutputAlarnS, Sourceld);
SourceA.Disposition <- "Normal";
Deliver(SourceA, SP);
END;

RejectAlarm <-
L]

! A represents an input Alarm to be rejected for the Reason given.
! SP is the source process, if local; otherwise it is null.

! If the sender is remote, send an ALARM-REJ.

! If local, find and abort the original SendAlarm event.

! It is unncecessary to secize Sourced: the calling path

! has it already.
!

' ®/
EXPR(A:AlarmHandle, SP:ProcessHandle)

BEGIN
Null(SP) => SendALARM\REJ(A, R2ason);
Sourced <== LookupTransaction(A.SourcelD);
DeQ(SP.QutputAlarmS, SourceA);
SourceA.Disposition <- Reason;
Deliver(Sourced, SP);

END;

103

i

s el P R e AL S R S A s R

Abstract Model of MSG
Module QUEUE

Transnit alarm-related protocol items to a remote MSG.

LY

SendALARM <-
EXPR(A:AlarmHandle)
BEGIN
A.ProtocolCommand <- "ALARM";
Deliver ToRemoteHost(A, A.DestProcess.Host);
END;

SendALARM\OK <-
EXPR(A:AlarmHandle)
BEGIN
A.ProtocolCommand <- "ALARM-OX";
Deliver ToRemoteHost(A, A.DestProcess.Host);
END;

SendALARM\REJ <-
EXPR(A:AlarmHandle, R2ason:ReasonCode)
. BEGIN
A.ProtocolCommand <- "ALARM-REJ";
A.Reason <~ Reason;
DeliverToRamoteHost (A, A.DestProzess.Host);
END;

104

Abstract Model of MSG 105
Module QUEUE

BnQOutputOpenConn <-

Process SP has issued an OpenConn, represented by OutC.

QutC.ConnBytesize and OQutC.ConnType have been validated.

Scan its connection set for one with the same ConnID as QutC,
and reject QutC if another one exists.

If no request for a connection with name OutC.ConnID has yst been received,
then transmit a CONN-OPEN to the remote process (or simulate same if
that process is local), and put OutC in the set of outgoing connection
requasts for SP.

If there is a corresponding incoming request, call it InC. If the remote
process names of InC and QutC do not match, than reject OQutC.

Check that InC and QutC have agreeable types and byte sizes. If not,
abort the local pending open, which will cause CONN-CLOSE to be sent
to the remote process.

If the connsction types agree, complete the OpenConn primitive
successfully, merge the input CoanHandle into OutC, discard InC, and
enter the merged ConnHandle in SPs set of open connections.

@ ED CaD CUD CED eD Cun CED CED CTD CuD P WD WD bup WD oum P @

*/
EXPR(OutC:ConnHandle, SP:ProcessHandle)
BEGIN
InC == ConnHandle;
FOREACH C IN SP.ConnectionS
DO C.ConnID = InC.ConnID => InC <- C END;
NOT (Null(InC) OR InC.State = "Awaiting OpenCona") =>
BEGIN
OutC.Disposition <-
"Already have connection of that ID";
Deliver(QutC, SP);
END;
Null(InC) =>
BEGIN
Insert(3P.ConnactionS, QutC);
OutC.State <- "Awaiting CONN-OPEN";
SendOpenConn(OutC, SP);
i X END;

’

B . TV TSI

S

Abstract Model of MSG
Module QUEUE

OQutC.DestProcess # InC.SourceProcess =>
BEGIN
QutC.Disposition £-
"Connection not to process named";
Deliver(OutC, SP);
END;
StopTiminz(InC);
Remove(SP.ConnectionS, InC);
BEGIN
CompatibleConnTypes(InC, OutC, OutC.Disposition) =>
BEGIN
MergeConnHandles(OutC, InC);
Insert(SP.ConnectionS, QutC);
QutC.State <- "Connection open”;
OutC.Disposition <- "Normal";
SendOpenConn(QutC, SP);
END;
DP == ProcessHandle;
OutC.DestProcess.Host = LocalHost ->
DP <- SeizeProcessHandle(QutC.DestProcess);
RejectConn(OutC, OQutC.Disposition, DP);
Release(DP);
END;
Deliver(OutC, SP);
Free(InC);
END;

MergeConnHandles <-
L

! QutC and InC are matching connection opan requasts. QutC will
! become the permanent record of the connection, so merge info
! from InC into it.
!
1

®/
EXPR(QutC:ConnHandle, InC:ConnHandle)
BEGIN
OutC.DestID <~ InC.SourcelD;
QutC.RamoteSocket <- InC.RemoteSocket;
END;

106

Abstract Model of MSG 107
Module QUEUE

EnQInputOpenConn <-
]

® D Cun D CED D CED VuD SED CUD CuD CED CUD CUD CUD CED 0D CuD AP cun ED oud SUD Suw S owm

InC represents an incoming request to open a conaaction.

SP is non-null if the request is from a local process, in which case
it is the handle for that process.

Assune that InC.ConnBytesize and InC.CoanType are legal.

Look for destination process. If found, call it DP. If not,
reject the connection request.

Look for a pendinz OpenCona by DP with same connsction ID
as InC. If none found, then either reject InC (if it mentions
a particular transaction), or enqueue it to await the local open.

If a pending output request is found call it OQutC. Check that
the remote process is the sane for InC as for CutC and that they
agree on the local transaction ID if InC claims to know it.

Having establishad that InC and QutC refer to the same connection,
check that a CONN-OPEN is acceptable in its current state, If
not, reject the open. If state is "Awaiting CONN-OPEN or
CONN-CLOSE", then adjust the stats but othesrwise iznore thes open.

Stop timinz on OutC and remove it from DP.ConnectionS.

Check the compatibility of InC and QutC. If they are compatible,
mark QutC complete and deliver it to DP. If InC and OutC dont match
abort the local OpenConn, which will cause a CONN-JLOSE to be sa2nt to the
renote process. In 2ither case, enter OutC in DP.ConnectionS, and
discard InC. If the connection has bean aborted, QutC sits in
DP.ConnectionS until an answeringz CLOSE-CONN is received or a
time-out occurs.

*/]
EXPR(InC:ConaHandle, SP:ProcessHandle)
BEGIN
DP <== SeizaProcessHandle(InC.DestProcess);
Null(DP) =>
RejectConn(InC, "Destination process unknown", SP);
QutC == ConnHandle,
BEGIN
FOREACH C IN DP.ConnectionS
DO C.ConnID = InC.ConnlID => QutC <- C END;
Null(OutC) =>

BEGIN
NOT Null(InC.DestID) =>
RejectCona(InC,
"Referanced coanection transaction does not exist",
SP);

Cardinality(DP.ConnectionS) GE MaxConnections =>
RejectCona(InC,

"Destination process connection linit reached",
SP);

InC.State <~ "Awaiting CpanConn";

tartTimini(InC, AWaitinzOpanConalnterval);

Insart(DP.Connection3, InC);

& END;

Abstract Model of MSG 103
Module QUEUE ‘

QutC.DestProcess # InC.SourceProcess OR
NOT Null(InC.DestID) AND OQutC.SourcelID # InC.DestID =>
RejectConn(InC,
"Connection ID inconsistent with local connection info",
SP);
QutC.State = "Awaiting CONN-OPEN or CONN-CLOSE" =>
QutC.State <~ "Awaitinzg CONN-CLOSE";
OutC.State # "Awaiting CONN-OPEN" =>
RejectOonn(Ing, "Already have conaection of that ID",
SP);
StopTiminz(OutC);
MergeConnHandles(QutC, Inc);
CompatibleConnTypes(InC, QutC, QutC.Disposition) =>
BEGIN
QutC.State <- "Connection open";
QutC.Disposition <~ "Normal";
Deliver(OutC, SP);
END;
OutC.State <- "Mismatch - awaiting CONN-CLOSE";
SendCloseConn(QutC, QutC.Disposition, DP);
END;
Release(DP);
END;

CompatibleConnectionTypes <-
Returns TRUE iff C1 and C2 nave the same byte size and complementary

connection types.
Sets disposition appropriately if there is a mismatch.

- ten ¢ s cmn o

%/
EXPR(C1:ConnHandle,
C2:ConnHandle,
Disposition:ReasonCode SHARED;
BOOL)
BEGIN
C1.ConnBytesize # C2.ConnBytesize =>
BEGIN
Disposition <- "Connection byte size mismatch";
FALSE;
END;
CASE(C1.ConnType, C2.ConnTypa]
["ServerTELNET", "UserTELNET"],
["UserTELNET", "ServerTELNZT"] => TRUE;
{"Binary", "Binary"] =>
CASE(C1.ConnDirection, C2.ConnDirection]
("InOut", "InOut"], ["In", "O.Jt"], [umtn’ "In"] =>
TRUE;
TRUE => FALSE;
END;
TRUE => FALSE;
END => TRUE;
Disposition <- "Connection type mismatch";
FALSE;
END;

!
!
!
!
!
]

!
!
!
!
!
]

b '

Abstract Model of MSG
Module QUEUE

SendOp=nConn <-
1

If QutC is addressed to a local process, then simulate
transmission of a CONN-OPEN by copying OutC and calling
the handler for input CONN-OPENs.

Otherwise, sand a CONN-OPEN to the remote process.

®/
EXPR(OutC:ConnHandle, SP:ProcessHandle)
BEGIN
QutC.DestProcess.Host = LocalHost =>
BEGIN
InC <=z ReverseConnHandle(OutC);
EnQInputOpenConn(InC, SP);
Free(InC);
END;
OutC.ProtocolCommand <- "CONN-OPEN";
DeliverToRemoteHost(OutC, OutC.DestProcess.Host);
END;

SendCloseConn <-
1

If OutC is addressed to a local process, then simulate
transnission of a CONN-CLOSE by copying OutC and calling
tha handler for input CONN-CLOSEs.

Otherwise, sand a CONN-CLOSE to ths remote process.

*®/
EXPR(OutC:ConnHandle, Reason:ResasonCode, SP:ProcessHandle)
BEGIN
OutC. Reason <~ Reason;
OutC.DestProcess.Host = LocalHost =>
BEGIN
InC <=z ReverseConnHandle(OutC);
InC. Reason <- QutC.Reason;
EnQInputCloseCona(InC, SP);
Free(InC);
END;
OutC.Protocol Command <- "CONN-CLOSE";
DeliverToRamnoteHost(OusC, OQutC.DestProcess.Host);
END;

RaverseConnHandle <-

! Produce a copy of C with Source and Destination reversad, 30 that

a reply to C can be sent.

®/
EXPR(C:ConnHandle; ConnHanile)
BEGIN
InC <== CopylonnHandle(OutC);
InC.SourceID <~ QutC.lestID;
InC.SourceProcess <- QutC,DestProcess;
InC.DestID <- OutC.SourcelD;
InC.DestProcess <= QutC.SourceProcass;
InC;
END;

109

Abstract Model of MSG 110

Module QUEUE

EnQOutputCloseConn <-
]

NewC represents either a CloseConn primitive or an OpenCona for which
an error has occurred trying to establish the connection.

Either way, it is known that an Op2nConn has been performed with identifier
NewC.ConnID. Call the original ConnHandle 0ldC (which will be identical
to NewC if this call results from an error).

Check that the destination process is consistant with the original open.

Substitute NewC for OldC in the TransactionTable entry
corresponding to this transaction. A single transaction ID will
be used for both primitives.

Take action depending on 0OldC.State.

- oED SuB ¢un SuD 0ean Vam Geum e® s SwD oem

L7
EXPR(NewC:ConnHandle, SP:ProcessHandle)
BEGIN
01dC <==
BEGIN
NewC.Op # "CloseConnection" => NewC;
SeizeTransaction(NewC. SourcelID);
END;
FOREACH C IN SP.ConnectionS
DO
NewC.ConnID = C.ConnID =>
[) 0ldC <- C; 0ldC # NewC -> Seize(01dC) (];
END;
BEGIN
OldC.DestProcess # NewC.DestProcess =>
BEGIN
NewC.Disposition <=
"Connection not to process namned";
Deliver(NewC, SP);

END;
ReplaceTransactionHandle(OldC. SourceID, NewC);
CASE[01dC.State]

[("Awaiting CONN-OPEN"] =>

'

! User process issued Close before completion
! of Open. Abort thz OpenConn, send CONN-CLOSE,
! wait for possible CONN-OPEN, then CONN-CLOSE,
! and abort the CloseConn after this exchange.
!
'

%/

BEGIN
StopTiminz(01dC);
0ldC.Disposition <~ "Superseded by close";
Remnove(SP,ConnactionS, 01dC);
Deliver(0ldC, SP);
R2lease(01dC);
NewC.State <-

"Awaiting COUN-QPEN or CONN-CLOSE";
NewC.Disposition <~ "Connection not yet open";
Insert(SP.ConnactionS, Newl);
StartTiming(NawC);

SendCloseConn(NawC, "Open superseded by close",
SP);
END;

Abstract Model
Module QUEUE

T T— T =

- W sum VB 0 S e o

of MSG

["Connection open"] =>

Could be a normal Close or error during connection attempt.
Replace 0ldC by NewC in the connection set. (Do this before
freeinz 01dC, in case 0ldC = NewC!).

Send CONN-CLOSE and wait for acknowledgemant.
NewC.Disposition indicates error, if any.

%/
BEGIN
Remove(SP.ConnactionS, 01dC);
MergeOpanIntoClose(NewC, 01dC);
Insert(SP.ConnactionS, NawC);
Free(01dC);
NewC.State <- "Awaiting CONN-CLOSE";
StartTining(NewC, AwaitingCONN\CLOSEInterval);
SendCloseConn(NewC, NewC.Disposition, SP);
END;

["Mismatch - awaiting CONN-CLOSE"] =>
1]

An OpenConn is pendinz. Abort it immediately.
CONN-CLOSE nas already been sent. Await the reply,
then abort the CloseConn.

*/

BEGIN
StopTiminz(01dC);
Remove(SP.ConnectionS, 01dC);
MergeOp2nIntoClose(NewC, 01dC);
Deliver(0ldC, 3P);
NewC,State <~ "Awaitinz CONN-CLOSE";
NewC.Disposition <~ "Connection not yet open";
Ins2rt(SP.ConnactionS, NewC);
StartTiming(NewC);

END;

["Awaiting Closelonn"] =>
L}

!
.
!
.
1

Could be normal Close or error during attempt to connect.

! NewC.Disposition indicates which.

(Freeinzg of 01dC must follow delivery of NewC in case the
two are identical!)

%/

BEGIN
StopTiminz(014C);
Renove(SP.CoaneztionS, 01dC);
Deliver(NawC, SP);
Free(0ldl);

END;

("Awaiting CONN-CLOSE"],

(

"Awaiting CONN-OPEN or CONN=CLOSE"] =>

B=GIN

NewC.Disposition <~ "R2dundant close";
Deliver(NawC, 3P);

END;

END;
END;

.A‘ ‘i jﬂéﬁ?c #

NewC => Release(0ldC);

e i

1M

Abstract Model of MSG
Module QUEUE

MergeOpanlIntoClose <~

r
]

! CloseC is about to replace OpenC in a set of ConnectionS.

! Copy the necessary connection information from OpenC to ClosaC.
]

]

®/
EXPR(CloseC:ConnHandle, OpenC:ConnHandle)
BEGIN
CloseC.DestID <- OpenC.DestID;
CloseC.Conneztion <- Op=nC.Connection;
CloseC.LocalSocket <- OpenC.LocalSockat;
CloseC. RemoteSocket <- OpenC.RamoteSocket;
END;

RejectConn <-
]

! InC is an incoming ConnOpen or ConnClose request, which must

! Dbe rejected.

! SP is the source process, if local, otherwise null. In the local case,
! it is not necessary to seize the source transaction because

! the calling path already nas it.

®/
EXPR(InC:ConnHandle, Reason:ReasonCode, SP:ProcessHandle)
BEGIN
Null(SP) => SendCONN\REJ(ReverseConnHandle(Inc), Reason);
Rejectlutput Conn(LookupTransaction(InC. SourcelD), Reason,
SP);
END;

RejectOutputConn <-
]

! QutC is an output OpenConn or CloseConn from process SP.

! It is to be rejected for the Reason given.

! Be sure QutC is in the proper stats to receive a rejection.

! If so, abort QutC, passing alonz the r=ason for rejection unless
3 OutC holds a prior error code, which takes pracadence.
’

*/
EXPR(QutC:ConnHandle, Reason:ReasonCode, SP:ProcessHandle)
BEGIN
0ldC.State = "Connection open'” OR
0ldC.State = "Awaiting OpanConn" CR
014dC.State = "Awaiting ClossConn" =>
MSGError{'Connaction rejection in wrong state');
StopTining(0ldC);
IsNornal(0ldC.Disposition) -> 01dC.Disposition <~ Reason;
Ramove(SP. Connactions, O14C);
Deliver(Q1dC, SP);
END;

112

.

T e

Abstract Model of MSG
Module QUEUE

EnQInputCloseConn <-
]

NewC represents an incoming connection close request.

If SP is non-null, then the connection is intrahost, and SP represents
the source of this Close.

Look for a connection record that either represents a previous input
CONN-OPEN (State = "Awaiting OpenConn"), or the local response to such
an input.

If no destination or no matching connection can be found, reject the
Close unless the rezason accompanying it is "ACKing your close'". Such
a belated Close could result fron timeouts.

@ tan 0D oun cum 0an SuB oud oum Sup O sum

%/
EXPR(NewC:ConnHandle, SP:ProcessHandle)
BEGIN
DP <== SeizeProcessHandle(NewC.DestProcess);
Null(DP) =>
NewC.Reason # "ACKing your close" ->
RejectConn(NewC, "Destination process unknown", 3P);
BEGIN
01dC == ConnHandle;
FOREACH C IN DP.ConnectionS
DO
MatchinzCona(C, NewC) =>
[) 01dC <- C; Seize(OldC) (1;
END;
Null(01dC) =>
NewC.Reason # "ACKinz your closs" ->
RejectConn(NawC, "Unknown connection", SP);
CASE[01dC.State]
["Awaiting CpenConn"] =>
'

! Sender is withdrawing a previous CONN-OPEN.
! Acknowledge and discard transaction.
]
|

*/
BEGIN
StopTiming(01dC);
Remove(DP.ConnectionS, 0OldC);
SendCloseConn(ReversaConntandle(01dC) ,
"ACKing your close", DP);
END;
["Connection open"] =>

Sender is initiating a connecticn close exchange.
Wait for local process to respoad.

- tem tem ‘@ -

%/
BEGIN
0ldC.State <~ "Awaiting ClosaConn";
StartTining(0ldC, AwaitinzCloseClonnlnterval);
END;
["Awaiting CloseConn"] =>
RejectConn(NawC, "Redundant close", SP);

Otherwise, take action appropriate to the state of the connection found.

113

e e Sdl

-

Abstract Model of MSG 114
Module QUEUE e

["Awaiting CONN-OPEN"] =>
MSGError('Inproper response to CONN-OPEN');
("Awaiting CONN-CLOSE"],
["Misnatch - awaiting CONN-CLOSE"],
[("Awaitingz CONN-OPEN or CONN-CLOSE"] =>
BEGIN
StopTiminz(01dC);
Renove(DP. ConnectionS, 01dC);
Deliver(0ldC, DP);
END;
END;
Release(01dC);
END;
Release(DP);
END;

MatchingConn <-
EXPR(O1ldC:ConnHandle, NewC:ConnHandle; BOOL)
BEGIN
OldC.State = "Awaiting OpenConn" =>
01dC. SourceProcess = NawC.SourceProcess AND
01dC.SourceID = NewC.SourcelD;
01dC.DestProcess = NewC.SourceProcess AND
01dC.DestID = NewC.SourceID AND
~(Null(NewC.DestID) OR OldC.SourceID = NewC.DestID);
END;

RecordCONN\REJ <-
1

! CR is an incominz CONN-REJ item.

! If the designatad transaction cannot be found, ignore CR.

! Otherwise, abort and deliver the original OpenConn or ClossConn.
!

'

*/
EXPR(CR:ConnBlock)
BEGIN
0ldC <== SeizeTransaction(CR.DestID);
BEGIN
Null(0l1dC) OR NOT IsConnHandle(01dC) OR
01dC.ourceProcess # CR.DestProcess OR
01dC.DestProcess # CR.SourceProcass =>
/* '"Transaction could have timed out';
SP <== SeizeProcessHandle(01dC.SourceProcess);
RejectOutput Conn{0ldC, CR.Reason, SP);
Release(SP);
£ND;
Release(01dC);
£END;

Abstract Model of MSG 115
Module QUEUE

v

‘-
]
'
]
(]
]
(]
]
]
]
]
]
]
1
]
]
]
]
]

-

n

~
1

.

Deliver ToRemoteHost <-

]

! T represents a transaction for which a protocol item must be sent
! out to host H.

]

' */

EXPR(T:TransactionHandle, H:HostCode)

BEGIN 3
RH <=z SeizeHostHandle(T.DestProcess.Host); 1
Deliver(T, RH);

Release(R4);

END;

Deliver <-
1

! Uis either a local process or a remote host.

! T is a transaction with output ready for U.

! Let SH be the dellvery server for U.

! If T is an alarm, zive it special priority.

! If SH is asl=ep, SIGNAL to wake it up, and set a flag to avoid
! redundant SIGNALs by other paths.

]

'

®/
EXPR(T:TransactionHandle, U:UserHandle)
BEGIN
DECL SH:ServerHandle LIKE Seize(U.DeliveryServer);
NonAlarmsQueued <== FALSE;
FOREACH QT AT QTLocation FromFrontOf SH.DeliveryQ
DO
NOT IsAlarmHandle(QT) =>
BEGIN
NonAlarmsQueued <- TRUE;
EnQAt(QTLocation, T);
END;
END;
NOT NonAlarmsQueued -> EnQ(SH.DeliveryQ, T);
IsProcessHindle(U) -> T.State <~ "Delivered";
NOT SH.Ruaning =>
() SIGNAL(SH.4ak2UpSiznal); SH.Runninz <- TRUE (];
Release(34);
END;

(e

Abstract Model of MSG
Module QUEUE

MatchingProcessNames -

Return TRUE iff the specific process nans Name is compatible
with GName, which may or may not be generic.

%/
EXPR(GName:ProcessName, Nama:ProcessName; BOOL)
GName.Host = Name.Host AND
GName.Incarnation = Name.Incarnation AND
GName.GenericName = Name.GenericName AND
(Null(GName.Instance) OR GName.Instance = Name.Instance);

EncodeGznericName <-

Translate generic name strings into generic codes.
Return FALSE iff the given string is not a valid name.

*/
EXPR(Class:Union(StringPtr, GenericClassCode) SHARED; BOOL)
BEGIN
NOT IsStringPtr(Class) => FALSE;
Found <== FALSE;
FOREACH GH IN GenericTable
DO
Value(GH.Class) = Value(Class) =>
[) Found <- TRLE; Class <- GH.Code (];
END;
Found;
END;

DecodeGenericClass <=~
L

]
!
!
'

Translate a zenaric class code into the corresponding string.

%/
EXPR(Class:Union(StringPtr, GenericClassCode) SHARED)
BEGIN
IsStringPtr(Class) => /* 'Already decoded';
Class <- GenzricTable[Class].Class;
END;

Abstract Mydel of MSG
Module QUEUE

Transaction Table Access

’

!

!

!

! TransactionTable maps TransactionIDs into TransactionHandles.

! One possible method of encoding table indices as part of transaction
: identifiers is describad in the MSG Design Specification.
!

!

!

]

TransactionTable entries are allocated by AssignTransactionID.and
freed by Free.

"/ -3

LookupTransaction <-
EXPR(ID: TransactionID; TransactionHandle) TransactionTable(ID];

SeizeTransaction <-
EXPR(ID: TransactionID; TransactionHandle)
Seize(LookupTransaction(ID));

ReplaceTransactionHandle <-
EXPR(ID:TransactionID, TH:TransactionHandle)
. LookupTransaction(ID) <- TH;

Process Table Access

ProcessTable maps local process instance identifiers to ProcassHandles
A method of encoding table indices in instance nunbers which results in
infrequent reuse of instance identifiers is describad in ths MSG Design
Specification.

- v s e tem e 4@ tem te o

»
~
Jd

LookupProcessHandle <-
EXPR(P:Processlane; ProcessHandle) ProcessTable[P.Instance];

SeizeProcessHandle <~
EXPR(P:Processlane; ProcessHandle)
Seize(LookupProcessHandle(P));

17

P

Abstract Model of MSG 118
Module CANCEL

- - - - - —— - ——— - - - -

Cancelling Transactions

tan WD S0 o s =

There are four ways a transaction event may terminate abnormally:

. Rescind

. StopMe

. host death

. timeout
These possibilities are considered in the table which follows. It contains
1all possible transaction states and the action to be taken for each state.
! Table entries have the form:
! state name
conditions precedent to this state
remote action taken whan enterinz this state
local action takan when cancelling
ramote action takan wnen cancelling

(parenthetical remarks indicate later independent responses)
! possibility of Rescind
!T and P are the transaction at issue and its owning process. The S and D
!prefixes indicate source and destination respectively. R is the delivery
!queue of the network server. TinR is true when T is in R.';

B sum W s> o o

Mess Qutput

Awaiting MESS-0X
OutputMess | Awaiting XMIT % XMIT received
send MESS
() StopMe => DeQ(SP.OutputMessQ, ST); RejectOutputMess(SP) (]
TinR => [) 014 => sat MESS-CANCEL; DeQ(R, ST) (]
(Not TinR: MESS-HOLD received -- send MESS-CANCEL)
TinR -> rescissible
Awaiting XMIT (remote)
Awaiting MESS-0K & MESS-HOLD received
send HOLD-OK
[) StopMe => D2Q(SP.QutputMessQ, ST); RejectOutputMess(SP) (]
[) TinR => set; send (] MESS-CANCEL
rescissible
Awaiting XMIT (local)
tputMess
[) StopMe => DeQ(SP.OutputMess), ST); RejectOutputMess(SP) (1;
DeQ(DP. InputMessQ, DT)
rescissible
Awaiting prior MESS comnpletion
tputMess & (sequance | stream-mark) block

[) StopMe => DeQ(3P.0utputMessQ, ST); RejectOutputMess(SP) (]

D S CuD LU e B VU CED LGP NP sum CeuD SR cen S WD Sem S8 w

rescissible’;

P s s VB W sem > s

Abstract Model of MSG 119
Module CANCEL :

GED D SuD Sud Sun GuD D D OUR sum CED CED CAD CuD 0UD cap CUD CUD OUD OSuD OGP Sun CED (GD OUD ¢ap CED 0aD Sun 0D WD Sun =

Mess Input

Awaiting HOLD-OK

Held

Held

MESS received & no buffer space
send MESS-HOLD
DeQ(DP. InputMessQ, DT)
TinR -> set MESS-REJ
(Not TinR: HOLD-OK received -- send MESS-REJ)
by sender (remote)
Awaiting HOLD-OK & HOLD-OK received
DeQ(DP. InputMessQ, DT)
send MESS-REJ
oy sender (local)
local mess received % no dest buffer space & source buffer space
RejectOutputMess(SP); DeQ(DP.InputMessQ, DT)

Awaiting retransmission

Held by renote sender & buffer space

send XMIT

- DeQ(DP. InputMessQ, DT); RemitBuffer(DP, DT)
TinR => set MESS-REJ

Awaiting ReceiveMess

Awai

local mess received | Held by local sender & buffer space
! MESS received & buffer space

remote -> send MESS-0K

DeQ(DP. InputMessQ, DT); CreditBuffer(DP, DT)

Receive Mess

ting MESS
ReceiveMess

DeQ(DP. ReceivelessQ, DT)

rescissible’;

Abstract Model of MSG ' 120
Module CANCEL

Alarm Output

Awaitinz \LARM-OK {
OQutputAlarm
send ALARM
Remove(SP.OutputAlarmS, ST) |
TinR -> DeQ(R, ST)
TinR -> rescissible’; f

Alarm Input

Awaiting ReceiveAlarn
ALARM received
send ALARM-0K
DeQ(DP.AlaraInputQ, DT)

Alarm Receive

Awaiting ALARM
ReceiveAlarm

DeQ(DP. ReceiveAlarmQ, DT)

rescissible’;

W s S S S sam 0w o

Conn Open

Awaiting CONN-OPEN
OpenConn
send CONN-OPEN |
Remove(P.ConnectionsS, T);] i
[) TinR => DeQ(R, T); send CONN-CLOSE (] ||
TinR -> rescissible i
A4aitinz Op=nConn |
CONN-QPEN received |

Remove(P.ConnectionsS, T) |
send CONN-REJ |

Connection open i
OpenConn & CONN-OPEN received
Remove(P.ConnectionS, T)
send CONN-CLOSE |
StopMe only'; |

SE tem S LB S s YER SR S L G G YW s S swm SeD S Sus =

B

Abstract Mcdel of MSG
Module CANCEL

PED \un SED CED CED WD can WD Sum CUD cuD 0ED D CED sup CAD CED CGD Sep CD SuD CuD SR SED B S w

Conn Closa

Awaiting CONN-CLOSE
CloseConn
send CONN-CLOSE
[) (rescind & TinR & viable connection) => set Connection open;
Remove(P.ConnactionS, T) (]
(rescind & TinR) -> DeQ(R, T)
(viable connzction & TinR) -> rescissible
Awaiting CloseConn
CONN-CLOSE received
Remove(P.ConnzctionS, T); (timeout -> activate ConnBroken siznal)
send CONN-CLOSE
Awaiting CONN-OPEN or CONN-CLOSE
Awaiting CONN-OPEN & CloseConn
send CONN-CLOSE
Remove(P.ConnzctionS, T)

Misnatch -- awaiting CONN-CLOSE
CONN-QPEN mismatch
send CONN-CLOSE
Remove(P.ConasctionS, T)

-t
’

the Delivered state -- Awaiting user | network delivery
No action';

I Notes

U cE Cwn tuD D LW ED VB D swD SuD sen *eD e S

rescind
if not rescissible, do nothing
stop timing
local and remote cleanup
direct delivery

Stopite
stop timing
local and remote cleanup
no delivery

deadhost
stop timinz
local cleanup
delivery via sarver

t imeout
local and remotz cleanup
delivery via server';

121

Abstract Model of MSG
Module CANCEL

RescindPendingEvent <-

RascindPendingEvent encodes the part of the above table
having to do specifically with rescission. First a test is
done to determine if the event is in a rescissible state.

If it is then both network and local action are takan.
Delivery is done by tha callin3g routine. CanczllinZ messaze
transactions where both sender and receiver are local is
handled specially. :

- Sep ouB s oem Swd cum S oun

*/
EXPR(E:TransactionHandle, EsProcess DestHandle; ReasonCode)
BEGIN
DECL Rescissible: BOOL
Rescissible <-
CASE[E.State]
("Awaiting XMIT"],
["Awaiting prior MESS completion"],
["Awaiting MESS"],
("Awaiting ALARM"] => TRUE;
["Awaiting MESS-0X"],
["Awaiting ALARY-0L"],
["Awaitinz CONN-OPEN"] =>
HasPendingProtocolQutput(E);
["Avaiting CONN-CLO3E"] =>
HasPandingProtocollut put(;) AND
NOT Null(E.Connection);
TRUE => FALSE;
END;
NOT Res~1551ble => "Unable to Rescind";
StopTiming(E);
IsLocalIransaction(E) =
BEGIN
RescindlocalEvent(E, EsProcess);
"Event rescinded”;

END;
E.State = "Awaiting COWN-CLOSE" =>
BEGIN
StopProtocolQutput(Z);

E.State <- "Connection open";
"Event rescinded";
END;
RemoteCancel(E, EsProcess,
BEGIN
MD(E) = MassHandle =>
"Messaze rescinded or timed out";
"Transaction rescindei";
END);
E.Disposition <- "Event rescinded";
LocalCancel(E, EsProcess);
"Event rescinded";
END;

122

Abstract Mddel of MSG 123
Module CANCEL

RescindlocalEvent <- i
' y

! RescindlocalEvent handles "Awaiting XMIT" rescission wheore

! both the sender and receiver are local. The source event is
! rejected and the destination event is degueued.
!

]

%/
EXPR(ST: TransactionHandle, SP:DestHandle)
BEGIN
b DECL DP:ProcessHandle LIKE
- SeizeDestHandle(ST.DestProcess);
1 DECL DT:TraansactionHandle LIKE
SeizeTransaction(ST.DestID);

ST.Disposition <- "Event rescinded";
RejectOutputMess(ST, ST.Disposition, SP,
2 TRUE IE NoDeliver);
; DeQ(DP. InputMessQ, DT);
Release(DP);
E Free(DT);
E END;

—

Abstract Model of MSG
Module CANCEL

StopTransaction <=~
L}

! StopTransaction encodes the part of the above table having
! to do specifically with StopMe. It can be called with

! T in any state. Both n2twork and local action are taken.
! No delivery is done, since the process is terminated.

! Local messaze output transactions are treated specially

! (activating messazes "Awaiting prior MESS completion" via
: RejectOQutputMess is avoided).

Ll

%/
EXSR(T:I?ansactionHandlc, TsProcess:DestHandle)
EGIN
Islocal Transaction(T) =>
StoplocalTransaction(T, TsProcess);
T.State = "Connection open" =>
BEGIN
S2ndCloseConn(T, "Process terminated", TsProcess);
Remove(TsProcess.ConnectionS, T);

END;
IsPassiveTransaction(T) => NOTHING;
StopTiming(T);
RemoteCancel(T, TsProcess, "Process terminated");
BEGIN

T.State = "Awaitingz MESS-OK" OR
T.State = "Awaiting X4IT" OR
T.State = "Awaiting prior MEZSS completion" =>
DeQ(TsProcess.QutputMessQ, T);
LocalCancel(T, TsProcess);
END;
END;

StoplocalTransaction <-

L}
! Stop handles messagze transactions where both the sender and
! receiver are local. The source traasaction is dequaued if
! owned Dy thz stopping process, otherwise it is rejected and
: delivered. The destination transaction is dequeued.

]

®/
EXPR(T:TransactionHandle, P:DestHandle)
BEGIN
DECL IsSender:BOOL LIKE T.State = "Awaiting XMIT";
DECL MatchinzP:ProcessHandle LIKE
SeizeDestHandle(BEGIN
IsSender => T.DestProcess;
T.SourceProcess;
END);
DECL MatchingT:TransactionHandle LIKE
SeizeTransaction(BEGIN
IsSender => T.DestID;

T.SourcelD;
END);
BEGIN
IsSender =>
BEGIN

DeQ(P.OutputMessQ, T);

124

Abstract Model of MSG 125
Module CANCEL ‘

DeQ(MatchinzP. InputiMessQ, MatchingT); |
END; {
MatchingT.Disposition <~ "Process terminated";
P RejectOutputMess(MatchingT, MatchingT.Disposition,
| MatchingP, TRUE IE toDeliver);
DeQ(P. InputMessQ, T);
Deliver(MatchinzT, MatchingP);
END;
Release(MatchingP); d
Free(MatchingT);
END;

HostDeadTransaction <-

]
! HostDeadTransaction encodes the part of the above table
! having to do specifically with the failure of an MSG.
| ! Only local action is taken, and the result is delivered via
]
!
]

server. If the owning process cannot ba seized FALSE is
returned.

"/
EXPR(T:TransactionHandle; BOOL)
; BEGIN
i IsPassiveTransaction(T) => TRUE;
DECL TsProcess:DestHandle LIKE
TestSeizeDestHandle(OwninzProcess(T));
Null(TsProcess) => FALSE;
StopTiminz(T);
DECL TsOldState:ReasonCode LIKE T.State;
T.Disposition <~ "Host died";
LocalCancel(T, TsProcess);
DeliverCancel (T, TsProcess, TsOldState);
Release(TsProcess); &
TRUE ; -
END;

Abstract Model of MSG
Module CANCEL

TimeoutTransaction <-

!
!
!
!
!
!
!
!
'

TimeoutTransaction encodes tha part of the above table

having to do specifically with timeout. Both network and
local action are taken, and the result is delivered via
server. If the owning process cannot be seized FALSE is
returnad. Cancelling messazZe transactions where both sender
and receiver are local is handled specially.

§ .

EXPR(T:TransactionHandle; BOOL)
BEGIN
DECL TsProcess:DastHandle;
Islocal Transaction(T) => TimeoutlocalTransaction(T);
TsProcess <- TestSeizeDestHandle(OwningProcess(T));
Null(TsProcess) => FALSE;
DECL TsOldScate:StateCode LIKE T.State;
RemoteCancel(T, TsProcess,
BEGIN
T.State = "Awaiting CONN-OPEN" OR
T.State = :
"Awaiting CONN-OPEN or CONN-CLOCSE" =>
"Timed out waiting for your CCNNZCTICON-OPEN";
IsMessHandle(T) =>
"Messaze rescinded or timad out";
"Transaction timed out";
END);
T.Disposition <- "Transaction timed out",;
LocalCancel(T, TsProcess);
TsOldState = "Awaiting CloseConn" ->
T.Op <~ "Stopte" /% 'for connaction-brokzn signal';
DeliverCancel(T, TsProcess, TsOldState);
Release(TsProcess);
TRUE;
END;

126

Abstract Model of MSG 127
Module CANCEL

Timeoutlocal Transaction <-
1]
! TimeoutlocalTransaction handles messaze transactions where
! both the sender and receiver are local. The source
! transaction is rejected, the destination transaction is
! dequeued and the source transaction is delivered. If the
H owning process cannot be seized FALSE is returned.
!
L]

*/
EXPR(T:TransactionHtandle; BOOL)
P | BEGIN
] DECL IsSender:3C0L LIKE T.State = "Awaiting XMIT";
DECL SP:ProcessHandle LIKE
TestSeizeDestHandle(T. SourceProcess);
Null(SP) => FALSE;
DECL DP:ProcessHandle LIKE
, TestSeizeDestHandle(T.DestProcess);
1 Null(DP) => [) Release(SP); FALSE (J;
' DECL MatchinzT:TransactionHandle LIKE
TestSeizeTransaction(BEZGIN
IsSender => T.DestID;
T.SourcelD;
END);
Null(MatchingT) => [) Releaoe(SP), Release(DP); FALSE @5
DECL ST:TransactionHandle LIKE
[) IsSender => T; MatchingT (];
DECL DT:TransactionHandle LIKE
[) IsSender => MatchinzT; T (1;
ST.Disposition <- DT. D159051t101 {- "Event timed out";
RejectOQutputMess(ST, ST.Disposition, SP,
- TRUE IE NoDeliver);
1 DeQ(DP. InputMessQ, DT);
. Deliver(ST, SP);
I Release(SP);
: ‘ Release(DP);
Free(MatchingT);
] TRUE;
END;

S ah e o Lo e itk

Abstract Model of MSG
Module CANCEL

LocalCancel <-

LocalCancel encodes the local action part of the above table.
In general this consists of dsqusuing the transaction from

the proper process queue,

EXPR(T:TransactionHandle, TsProcess:DestHandle)
CASE(T.State]

["Awaitinz MESS-0K"],
["Awaiting XMIT"],
("Awaitinz prior MESS completion"] =>
RejectOutputMess(T, T.Disposition, TsProcess,
TRUE IE MNoDeliver);
["Awaiting HOLD-0X"], ["H2ld by sender"] =>
‘DeQ(TsProcess. InputMessQ, T);
["Awaitinz retransmission"] =>
BEGIN
DeQ(TsProcess.InputMessQ, T);
RemitBuffer(TsProcess, T);
END;
("Awaiting ReceiveMess"] =>
BEGIN
DeQ(TsProcess. InputMessQ, T);
CreditBuffer(TsProcess, T);
END;
["Awaitinz MESS"] => DeQ(TsProcess.ReceiveMessQ, T);
("Awaiting ALARM-0KX"] =>
Remove(TsProcess.QutputAlarmS, T);
["Awaiting ReceiveAlarm"] =>
DeQ(TsProcess.InputAlarm, T);
("Awaiting ALARM"] => DeQ(TsProcess.ReceiveAlarmQ, T);
("Awaiting CCOUN-OPEZN"],
[("Awaiting OpenConn"],
["Awaiting CONN-CLOSE"],
["Awaiting CloszClonn"],
["Awaitinz CONN-OPEN or COHN-CLOSE"],
["Mismatch -- awaiting CONN-CLOSE"] =>
Remove(TsProcess.ConnactionS, T);
("Delivered"] => NOTHING;
TRUE => MSGError('3ad canzel state');

END;

128

B — - e —— - - P

Abstract Model of M3G 129
Module CANCEL

RemoteCancel <-

L]
RemotoCancel encodes the network action part of the above
table. In general this consists of sendinz a protocol item,
or chanzing or removing 3 protocol item ready to be sent.

- ' s s om

®/
% EXPR(T:TraansactionHandl=2,
: TsProcess:DestHandle,
Why : R2asonCode)
CASE[T.State]
("Awaiting MESS-0K"] =>
BEGIN
HasPendingProtocolOutput(T) =>
BEGIN
NOT Null(T.DestID) =>
ChanzeProtocolOQutput(T, '"MESS-CANCEL", Why);
StopProtocol Qutput(T);
END;
END;
[("Awaiting XMIT"] =>
BEGIN
HasPendinzProtocolQutput(T) =>
ChangeProtocolOutput(T, "MESS-CANCEL", Way);
SendMESS\CANCEL(T, Way);
END;
("Awaitinz HOLD-OK"] =>
HasPendinzProtocolOutput(T) ->
ChangeProtocolOutput(T, "MESS-REJ", Whay);
["Held by sander"] => SendMESS\REJ(T, why);
["Awaitinz retransaission"]) =>
HasPendingProtocolOutput(T) =>
ChangeProtocolQutput(T, "MESS-REJ", Why);
' ["Awaiting ALARM-0X"] =>

{ HasPendinzProtocolQutput(T) -> StopProtocolQutput(T);
["Awaiting CONN-OPEN"] =>
BEGIN

HasPendingProtocolQutput(T) => StopProtocollutput(T);
SendCloseConn(T, ahy, TsProcess);
END;
["Awaiting CpenCona"] => RejectCona(T, Why, TsProcess);
[("Awaiting CloseConn"] =>
SendClos=Conn(T, Wny, TsProcess);
1 TRUE => NOTHING;
END;

AT

Abstract Model of MSG 139
Module CANCEL

IsPassiveTransaction <-
]
! IsPassiveTransaction determines whether any cancel action nzed
! be takan. If the traasaction is awaiting local delivery it
! can be ignored.
]
' #/ EXPR(T:TransactionHandle; BOOL) T.State # "Delivered",

Islocal Transaction <-
]

! IslocalTransaction determines whether a traansaction is a
! messaze transaction with both sender and receiver local.
!

] i/

EXPR(T:TransactionHandle; BOOL)

T.State = "Awaitinz XMIT" AND
T.State.DestProcess.Host = LocalHost OR
T.State = "Held by sender" AND

T.SourceProcess.Host = LocalHost;

OwningProcess <-
L

! OwningProcess returns the process name of the process for
! which the given transaction was created.
]
I*/
EXPR(T:TransactionHandle; ProcessName)
CASE[T.State]
[("Awaiting HOLD-OX"],
["Held by sender"],
[("Awaiting retransnission"],
["Awaitinz ReceiveMess"],
("Awaiting MESS"],
("Awaiting ReceiveAlarm"],
{"Awaitinz ALARY"] => T.DestProcess;
TRUE => T.SourceProcess; i
END;

HasPendingProtocolOutput <-
|

! HasPendinzProtocolQutput determines whetner a traasaction
! has a protocol item waiting to be sent.

!

[} ./

EXPR(T:TransactionHandle; BOOL) NOT Null(T.ProtocolCommand);

ChangeProtocolQutput <-
1

! ChangeProtocolQutput chanzes the type of protocol item waiting
! to b2 sent (to one appropriate for cancellation).
!
1./
EXPR(T:Transactiontanile,
Action:ProtoceclCode,
Ahy:ReasonCode)

() T.ProtocolComnand <- Action; T.Reason <= Wiy (];

Abstract Model of MSG 131
Module CANCEL :

StopProtocolQutput <-
]

! StopProtocolQutput stops the sending of a protocol item
! waiting to be sent by daqueuing its transaction from the
! network delivery queue.
!
]

*/
EXPR(T:TransactionHandle)
BEGIN
DECL HC:HostCode LIKE T.DestProcess.Host;
f DECL Hd:HostHandle LIKE
FOREACH H IN HostS DO HC = H.Host => H END;
DECL HQ:Queu=(Transaction) LIKE
HH.DeliverServer.DeliveryQ;
Seize(HQ);
DeQ(HQ, T);
Release(HQ);
END;

DeliverCancel <-
L]

! DeliverCancel detsrmines whether a cancelled transaction need
| ! be delivered (via server), and if so delivers it.

]
! "y

' EXPR(T:TransactionHandle,
TsProcess:DestHandle,
TsOldState:R=asonCode)
CASE[TsOldState]
("Awaiting MES3-0K"],
["Awaiting XMIT"],
("Awaitinz prior MESS completion"],
] ["Awaitinz MESS"],
("Awaiting ALAR4-OK"],
: ["Awaiting ALARM"],
‘ ("Awaiting CONN-OPEN"],
4 ("Awaiting CONN-CLOSE"],
3 [("Awaiting CloseConn"],
i ["Awaiting CONN-OPEN or CONN-CLOSE"] =>
Deliver(T, TsProcess);
TRUE => NOTHING;
END;

Abstract Model of MSG ' 132
Module CANCEL

- - — - - - - - . - = = - e - W - - - - - - - -

Timer routines

Deadlinass are absolute fixed points, not intervals.
The front of the timer queus is the evant which will time out earliest.
The FOREACH loop runs from the front of the queuz to the back.';

StartTiming <-
]

! StartTiming takes a transaction and adds it to the timer
! queue. If a naw deadlins is supplied via NewTimer, it is

! assumed to be a relative interval, and is converted to

! absolute formn. The timer queue is scanned, th2 transaction
]

!

1

]

inserted and, if the transaction is at the f{ront of tne
queue, the timer process is notified.

' ! */
; EXPR(NawEntry:TransactionHandle, NewTimer:Interval)
BEGIN
g Seize(Timerl);
% DECL IsAtFront:BOOL LIKE
Null(TimerQ) OR
NawEntry.Deadlinz LT Front(TimerQ).Deadlins;

NOT Null(NewTimer) ->

NewEntry.Deadline <- MakzIntervalAdbsolute(NewTimar);
BEGIN

Null(TimerQ) => FALSE;
' FOREACH Entry AT Eslocation FromFrontOf TimerQ
. DO

NewEntry.Deadline LT Entry.Deadline =>

() EnQAt(Eslocation, NewEntry); TRUE (J;

FALSE;
END;
3] END #> EnQ(TimerQ, NewEntry);

IsAtFront -> SIGNAL(TimerSignal);

Release(TimerQ);
END;

b StopTiming <-

1]

! StopTiming takes a transaction 3nd reanoves it from the timer
k ! queus,

]

1]

! ’
EXPR(OldEntry: TransactionHandle)
BEGIN
Seize(Tinerd);
D2Q(Timer®, OldEntry);
Release(TinerQ);
END;

Abstract Model of MSG
Module CANCEL

TimeoutHandler <-

|}
!
.

]

TimeoutHandler waits for timeouts and cancels transactions.
It waits until the deadline of the front 2ntry of the timer
queue expires. It also waits to be signalled from
StartTiming that a new entry has been put on the front of
the timer queue. When a transaction times out an attempt is
made to seize it and cancel it. If this is successful the
transaction is removed from the timer queue. If this fails,
TimeoutHandler waits a brief interval and tries again.

%/
EXPR()
REPEAT
Seize(TimarQ) /% 'This may wait for StartTimingz
! or StopTiming to Release.';
DECL TimeoutSignal :SignalType LIKE
BEGIN
Null(TimarQ) => NullSignal;
StartClock(BEGIN
Frort(TimerQ).Deadlin2 LT CurrentTime() =>
MakeIntervalAbsolute(SeizeWait);
Front(TimerQ) .Deadline;
END);
END;
Release(TimerQ);
DECL WaitSignal:SignalType LIKE
WAIT({ TimerSiznal, TimeoutSignal });
BEGIN
WaitSignal = TimerSignal => StopClock(TimeoutSignal);
Seize(TimerQ);
FOREACH Entry AT Eslocation FromFrontOf TimerQ
DO
CurrentTime() LT Entry.Deadline => NOTHING;
TestSeize(Entry) #> NOTHING;
Timeout Transaction(Entry) -> DeQAt(Eslocation);
Free(Entry);
END;
Rzlease(TimerQ);
END;
END;

133

T

Abstract Model of MSG ' 134

Module REMOTE

MSG-MSG protocol format definitions

! Th2 various fields of protocol items input from the network must be
tconverted from 8-bit byte agglomerations into usable objects, and the reverse
'must be done on output. The following operators define and perform the
lconversion, allowing the mass of network data to be accessed as a data
Istructure.

! The FORMAT operator defines the simulated data structure of the protocol
litems, with 2ach field being given a name, a mode and a lenzth in bytes.
! Some field specifications vary from this Z=zneral form, and employ the

1following operators in their definition. Th2 = operator indicates that a3
!1field is actually composed of a number of subfields, which are defined in the
'FORMAT that ~ takas as its argument. The ~ operator indicates that a field
'requires spe:ial processing to convert it, with ° taking as its arzgumsnt the
routine to do the processing. The --- operator indicates that a field is not
tconverted by FORMAT at all, but is included for documsntation purposes.

! The 3 operator indicates a field tnat may be assigned directly to and
tfromn an appropriate internal data structurs. Such direct assignments are
Iperformed witn th2 <|| and }|> operators.

! Tne | operator is used to referance individual fields, the format to
!which tha | applies havinz been chosen by 2ither the <|i{, {i> or || operator.

Header <- FORMAT(Length:SnortInt(2), Command:ProtocolCode(1));

L

! Mess-related formats';

MessFormat <-

FCRMAT(Lengtn:SnortInt(2),
Comnand: Protocol Code(1),
SourcelD:? TransactionlID(2),
DestID:@ TransactionID(2),
FirstByte:Snortiat(1),
IsGeneric:3 BOOL,
IsSequanced:? BOOL,
IsMarked :3 BOOL,
NoHold:2 BOCL,
Holdlk :3 BCOL,
NoQ¥ait :BOOL,
SourcaProcess:d ~ MSGProcessName,
DestProcess:? ~ M3GProcesshame,
Text:-==);

i

Abstract Model of MSG 135
Module REMOTE

MessOkFormat <-
FORMAT (Lenzth:Short Int(2),
Command : ProtozolCode(1),
SourceID:@ TransactionID(2),
SourceProcess:2 ~ MSGProcessName,
DestProcess:@ ~ MSGProcessNane);

MessRe jFormat <-
FORMAT (Lengtn: ShortInt(2),
Command : ProtocolCode(1),
SourcaID:9 TransactionID(2), _
Reason:? ReasonCode(1), ‘
SourceProcess:® ~ MSGProcessName,
DestProcess:3 ~ MSGProcessName); i

MessHoldFormat <-
FORMAT(Length:SnhortInt(2),
Command : ProtocolCode(1), |4
SourceID:3 TransactionID(2), ‘
DestID:@ TransactionID(2),
SourceProcess:2 ~ MSGProcesslame,
DestProcess:® ~ MSGProcessNane);

| HoldOkFormat <- .
FORMAT (Lenzgth:Short Int(2), : '
! Command : ProtocolCode(1), !
SourcelID:@ TransactionID(2),
DestID:3 TransactionID{(2),
SourceProcess:@ ~ M3GProcessName,
DestProcess:2 ~ MSGProcessName);

MessCancelFormat <-
FORMAT (Length:ShortInt(2),

Comnand : Protocol Code(1) ,
SourceID:3 TransactionID(2),
DestID:? TransactionID(2),
Reason:? ReasonCode(1),
SourceProcess:8 ~ MSGProcessName,
DestProcess:? ~ MSGProcessName);

XmitFormat <-

FORMAT(Lengtn:SnortInt(2),
Comnand : Protocol Code(1),
SourcelD:? TransactionID(2),
DestID:@ TransaztionID(2),
SourceProcess:? = MSGProcessNane,
DestProcess:8 = M3GProcesshamne);

PE=

Abstract Model of M3G
Module REMOTE

]
! Alarm-related formats';

AlarmFormat <-
FORMAT (Length: Short Int(2),
Command : ProtocolCode(1),
SourcelID:8 TransactionID(2),
Alarm:2 AlarmCode(2),
SourceProcess :8 ~ MSGProcessName,
DestProcess:3 ~ MSGProcessName);

AlarmkFormat <-
FORM4AT(Lenzth:SnortInt(2),
Command : Protocol Code(1),
SourcelID:3 TransactionID(2),
SourceProcess:@ ~ MSGProcessName,
DestProcess:? ~ MSGProcessName);

AlarmRejFormat <-
FORMAT(Lenztn:ShortiInt(2),
Command : ProtocolCode(1),
SourcelID:? TransactionID(2),
Reason:3 ReasonCode(2),
SourceProcess:? ~ MSGProcessName,
DestProcess:@ ~ MSGProcessNane);

L]
! Conn-related formats';

ConnOpenFormat <-
FORMAT (Length: ShortInt(2),

Command : ProtocolCode(1),
SourcelD:¢ TransactionID(2),
DestID:3 TransactionID(2),
ConnID:? ConnIDCode(2),
Type\duplex :BOOL,
Type\sand :BOOL,
Type\receive:BOOL,
Type\ServerTELNET:BOOL,
Type\Us=2rTELNET:BOOL,
ConnBytesize:? ShortlInt(1),
RemoteSockat:2 Iateger(3),
SourceProcess:2 T 4SGProcessName,
DestProcess:? ~ MSGProcessName);

Abstract Model of MSG

Module REMOTE

ConnCloseFormat <-
FORMAT (Lenzth:Short Int(2),
Command : ProtocolCode(1),

SourcelID:@ TransactionID(2),
DestID:? TransactionID(2),

ConnID:3@ CoanlIDCode(2),
Reason:? ReasonCode(1),

SourceProcess:@ ~ MSGProcessNane,
DestProcess:@ ~ MSGProcessName);

ConnRejFormat <-
FORMAT(Length:ShortInt(2),
Command : Protocol Code(1),

SourcelID:? TransactionID(2),
DestID:9 TransactionID(2),

ConnlD:3 ConnIDCode(2),
Reason:3@ ReasonCode(1),

SourceProcess:? ~ MSGProcessName,
DestProcess:@ ~ M3GProcessNane);

]
! Other formats';

NoOpFormnat <-

FORMAT (Length: Short Int(2), Command:ProtocolCode(1));

EchoFormat <-
FORMAT (Length: ShortInt(2),
Command : ProtocolCode(1),
Data:ANY(1));

EchoReplyFormat <-
FORMAT (Lenzgth:ShortInt(2),
Command : ProtocolCode(1),

Data:ANY(1));

ExpFormat <-
FORMAT (Length:Short Int(2),
Command : ProtocolCode(1),
Function:ANY(1));

137

el s i

Abstract Model of MSG
Module REMOTE

SendStatusFormat <-
FORMAT (Lengztn: ShortInt(2),
Command : ProtocolCode(1),
SourcelD: TransactionID(2),
SourceProcess:™ MSGProcessName,
Dest Process:~ MSGProcessName);

StatusOkFormat <-
FORMAT (Length: ShortInt(2),
Command : ProtocolCode(1),
SourcelID: TransactionID(2),
SourceProcess:~ MSGProcessNane,
DestProcess:™ MSGProcessName,
Status:--=);

StatusRejFormat <-
FORMAT(Length:SnortInt(2),
Command : Protocol Code(1),
SourcelID:TransactionID(2),
Reason:ReasonCode(2),
SourceProcess:~ MSGProcessName,
DestProcess: ™ MSGProcessNane);

CloseFormat <-
FORMAT (Length:Short Int(2),
Command : ProtocolCode(1),
Reason:ReasonCode(2));

SynchFormnat <-

FORMAT (Length:Short Int(2),
Commnand : ProtocolCode(1),
Sender:ShortInt(2),
Receiver:ShortInt(2),
Version:ShortInt(2));

PtclErrFormat <-

FORMAT (Length:ShortInt(2),
Command : ProtocolCode(1),
ErrorCode: ShortInt(2),
BadTransaction:=-=);

138

EiRas aviaiiinnaa, e,

y

|
|
!
|

Abstract Model of MSG 139
Module REMOTE |

MSGProcessName <-
FORMAT (Incarnation:3 ShortInt(2),

GenericClass <~
1]

NetBuffer <-
]

- S W cwm e ot B o D

*/

*STRUCT(Data:VECTOR(2273, NetByte), =
Channel: ChannelHandle, ,
Host :HostCode, ,
Scan: Integer,

NetReceiveltem <-
L}

NetSendItem <~
]

“‘
’

The Processhune format.';]

Instance:2 ShortInt(2),
GenericName:@ “ GenericClass);

GenericClass is the routine invoked to parse the GenzriclName field.
The GenericNane field hass a conditional structure, unlixke other
fields. If the first byte of the field is greater than 127 then
it is a gezneric code, and there is no more to the field. If it is
less than or equal to 127 it is the length of a text string naming
the class, with the text bytes following.';

NetBuffer is the data structure used to buffer incoming and
outgoing network data. Data is the actual network data
(2273 is tha maximum number of bytes in the longest possible
item). Channel is the network channel used for transfers to
and from tnhe buffer. Host is the target host. Scan is a
pointer to the last byte read or written (it is advanced
by the <!, {i> and | operators as they process fields).
Read points to the last byte RECEIVEd from the network.

Read:Integer)';

NetReceiveltem reads a complete protocol item into the NetBuffer passead
to it. It RECEIVEs th2 first two bytes (the length of the item) ani
then RECEIVEs the rest.';

NetSendIten SENDs the protocol item in the NetBuffer passed to it.';

Abstract Model of MSG 149
Module REMOTE

Protocol input routines

Protocol Input <-
]

Protocol Input waits until either there is a new channel for
! it to listen to, or there is activity on one of the channels
! already assigned to it. When a channel bacomes active, the
! routine inputs a protocol item and dispatches to tne proper
! specialized item handler.
!
]

‘ ®/
E | EXPR(Ego:ServerHandle)
b BEGIN
DECL B:NztBuffer LIKE AllocateNetBuffer();
REPEAT
BEGIN
DECL Siznalor:UNION(ChannelHandle, SiznalType) LIKE
WAIT({ Ego.ChannalS, Ezo.WakeUpSignal });
Sigznalor = Ezo.WakeUpSignal => NOTHING;
B.Channel <- 3Signalor;
B.Host <- GetHostFromChrannel(B.Channel);
NetReceivelten(B) #> ProtocolError(B);
1 {1 Header;
CASE[} Command]
("MESS"] => InputMess(B);
["MESS-0X"] => InputMessOk(B);
[("MESS-REJ"] => InputMessRz2j(B);
! ("MESS-HOLD"] => InputMessHold(B);
‘ ("HOLD-0X"] => InputHoldOk(B);
["MESS-CANCEL"] => InputMessCancel(B);
("X4IT"] => InputXmit(B);
| ["ALARM"] => InputAlarn(B);
: . ("ALARM"] => InputAlarmClk(B);
["ALAR4M-REJ"] => IaputAlaraRej(B);
["CONN-OPEN"] => InputConnOpen{(B);
| ["CONN-CLOSE"] => InputConnClosa(B);
' ["CONN-REJ"] => InputConnRej(B);
TRUE => ProtocolError(B);
END;
END;
END;
END; !

|
i

o

e

I

Abstract Model of MSG 141
Module REMOTE .

The following routines parse protocol items and convert then to the
appropriate internal data structures. They verify lengths, genaric
codes and incarnation numbers, and supply host information.

InputMess <~
'

./

InputMasss, in addition to the usual input functions:
produces a MessHandle,

converts the NoQWait field,

verifies specific/gensaric consistency,

and moves the message text (via InputMessText) from the
NetBuffer into the MessHandle. If InputMessText cannot
allocate storage for the text, it is left null.

EXPR(B:NatBuffer)

BEGIN

DECL MB:MessBlock;
MB <i}| MessFormat;
MB.QVait <- NOT | NoQWait;
B.Scan # | FirstByte => ProtocolError(B);
EncodeGenericClass(MB. SourceProcess.GaenaricName) #>
ProtocolError(B);
EncodeGenericClass{MB.DestProcess.GenericNamne) #>
ProtocolError(B);
MB.SourceProcess.tost <- B.Host;
MB.DestProcess.tost <- LocalHost;
DECL MH:M42ssHandle LIKE
Allocate(MessHandle, MB) /* 'implicit Seize';
MH.DestProcess.Incarnation # LocallIncarnation =>
BEGIN
SendMESS\REJ(MH, _
"Bad incarnation number on destination process");
Release(MH);
END;
BEGIN
Null(MH.DestProcass. Instance) =>
NOT MH.IsGenaric OR MH.IsSeguencad CR !MH.IsMarkad;
MH. IsGeneric OR Qwait;
END =>
BEGIN
SendMESS\REJ(MH,
"Destination nane/handling - genaric/specific misnatch™);
Raleas2(1H);
END;
MH.TextLenzth <- | Length - | FirstByte;
InputMessText(B, Mi);
EnQInputMess(MH);
Free(Mi1);

END;

Abstract Model of MSG
Module REMOTE

InputMessOk <-
EXPR(B: NetBuffer)

BEGIN
DECL MB:MessBlock;
MB <i| MesskFormat;
FormatError(B, MB) => NOTHING;
MB.SourcaProcess.Host <- LocalHost;
MB.D2stProcess.Host <- B.Host;
RecordMESS\OX(MB) ;

END;

InputMessRej <-
EXPR(B: NetBuffer)

BEGIN
DECL MB:MessBlock;
MB <i) MessRsjFormat;
FormatError(B, MB) => NOTHING;
MB.SourcaProcess.Host <- LocalHost;
MB.DestProcess.Host <- B.Host;
RecordMESS\REJ(MB) ;

END;

InputMesshHold <-
EXPR(B: NetBuffer)

BEGIN
DECL MB:MessBlock;
MB <} | MessHoldFormat;
FormatError{(B, ME) => NOTHING;
MB.SourceProcess.tost <- LocalHost;
MB.DestProcess.Host <~ B.Host;
RecordMESS\HOLD(MB) ;

END;

InputHoldk <-
EXPR(B: NetBuffer)

BEGIN
DECL MB:MessBlock;
MB <} HoldCkFornat;
FormatError(B, MB) => NOTHING;
MB.SourceProcess.Host <~ B.Host;
MB.DestProcess.Host <- LocalHost;
RecordHOLD\OK(M3) ;

END;

InputMessCancel <-
. EXPR(B: NetBuffar)
BEGIN
T ECL MB:MessBlock;
MB <} MessCancelFormat;
FormatError(B, MB) => NOTHING;
MB.SourcaProcess.tost <- 3.tHost;
MB.DestProcass.Host <~ localbbst;
RecordMESS\ CANCEL(M3) ;
END;

Lt _“._.‘......

142

Abstract Model of MSG 143
Module REMOTE

InputXmit <-
EXPR(B: NetBuffer)
| BEGIN

g ! DECL MB:MessBlock;

- MB <}i XmitFormat;
FormatError(B, MB) => NOTHING;
MB.SourceProcess.Host <- LocalHost;
MB.DestProcess.Host <- B.Host;
RecordXMIT(MB) ;

END;

InputAlarm <-
'

! InputAlarm, in addition to the usual input functions:
! produces an AlarmHandle.
[] =
Yy
; EXPR(B:NatBuffer)
BEGIN
DECL AB:AlarmBlock;
AB <} | AlarmFormat;
LengthError(B) => ProtocolError(B);
EncodeGenericClass(AB. SourceProcess.GznericName) #>
{ ProtocolError(B);
EncodeGenericClass(AB.DestProcess.GenericName) #>
ProtocolError(B);
AB.SourceProcass.Host <- B.Host;
AB.DestProcess.tost <- Localhost;
DECL AH:AlarmHandle LIKE
Allocate(AlarnHandle, AB) /* 'implicit Seize';
AH.DestProcess. Incarnation # Locallncarnation =>
BEGIN
SendALARM\REJ (AH,
"Bad incarnation number on destination process");

Free(Ad);
END; -
EnQInputAlarm(AH);
Free(AH);
END;

InputAlarnlk <-
EXPR(B: NetBuffer)

BEGIN
DECL AB:AlarmBlock;
AB <} AlarnXkFormnat;
FormatError(3, AB) => NOTHING;
AB.SourceProcass.tost <~ LocalHost;
AB.DestProcess.tost <- B.Host;
Record ALARNOX(AB) ;

END;

Abstract Model of MSG
Module REM0TE

InputAlarmRei <-
EXPR(B: NetBuffer)

BEGIN
DECL AB:AlarnBlock;
AB <} AlarmRejFornat;
FormatError(B, AB) => NOTHING;
AB.SourceProcess.Host <- LocalHost;
AB.DestProcess.Host <- B.Host;
Record ALARM\REJ(AB) ;

END;

InputConnOpen <-
]

!
!
!
$
!
[

InputConnCpen, in addition to the usual input functions:
produces a ConnHandle,

converts MSG connection types to internal ones,
verifies connection type (one and only one),

and verifies bytesize range.

74
EXPR(B: NetBuffer)
BEGIN
DECL Duplex, Send, Receive, ServerTelnet, UserTelnet:300L;
DECL CB:ConnBlock;
~CB <} ConnOpenFormat;
Duplex <- | Typalduplex;
Send <- | Type\send;
Raceive <- | Type\receive;
ServerTelnet <- | Type\ServerTELNET;
UserTelnzat <- | Type\UserTELNET;
C.ConnType <-
BEGIN
UserTelnet => "UserTELNET";
ServerTelnat => "ServerTELNET";
"Binary";
END;
C.ConnDirection <-

[) Send => "Qut"; Receive => "In"; "InOut" (];
LengthError(B) => ProtocolError(B);
EncodeGenericClass(C8.5ourceProcess.GenaricName) #>

ProtocolError(B);
EncodeGenzricClass(C3.DestProcess.Genaricliane) #>

ProtocolError(B);

144

Abstract Model of MSG 145
Module REMOTE

CB.SourceProcess.Host <- B.Host;
CB.DestProcess.Host <- LocalHost;
DECL CH:ConnHandle SHARED

E | Allocate(ConnHandle, CB) /% 'implicit Seize';
CH.DestProcess.Incarnation # Locallncarnation =>
BEGIN
SendCONN\REJ(CH,
"Bad incarnation number on destination process");
Free(CH);
END;
[) Duplex => 1; 0 (] + [) Send => 1; 0 (] +
[) Receive => 1; 0 (] + [) ServerTelnet => 1; 0 (] +
[) UserTelnat => 1; 0 (] # 1 =>
‘BEGIN
SendCCNN\REJ(CH, "Invalid connection type");
Free(CH);
END;
CH.ConnBytesize GT MaximunConnBytesize =>
BEGIN
SendCONN\REJ(CH, "Invalid connection byte size");
Free(CH);
END;
! EnQInputOpanConn(CH);
f Free(Cd);
‘ END;

InputConnClose <-
EXPR(B:NetBuffer)
BEGIN
DECL CB:ConnBlock;
CB <ii ConnCloseFormat;
LengthError(B) => ProtocolError(B);
EncodeGanericClass(CB.SourceProcess.GanericNane) #>
ProtocolError(B);
EncodeGenericClass(CB.DestProcess.GenericNane) #>
ProtocolError(B);
CB.SourceProcass.Host <- B.Host;
CB.DestProcess.Host <- LocalHost;
DECL CH:ConnHandle LIKE
Allocate(ConnHandle, CB) /% 'Implicit Seiz2';
CH.DestProcess. Incarnation # LocallIncarnation =>
BEGIN
SendCONN\REJ(CH,
"Bai incarnation number on destination procass");
Free(CH);
END;
EnQInputCloseConn(CH);
END;

Abstract Model of MSG
Module REMOTE

InputConnRej <-
EXPR(B: NetBuffer)

BEGIN
DECL CB:ConnBlock;
CB <i} ConnRejFormat;
FormatError(B, CB) => NOTHING;
CB.SourceProcess.Host <- B.Host;
CB.DestProcess.Host <- LocalHost;
Racord CONN\REJ(CB) ;

END;

FormatError <-

\J
!
!
!
'

FormatError verifies lengths, generic codes and incarnation
numbers.

%/
EXPR(B:NetBuffer, TB:TransactionBlock; BOOL)
BEGIN
LengthError(B) => [) ProtocolError(B); FALSZ (];
EncodeGenericClass(TB. SourceProcess.GanericName) #>
[) ProtocolError(B); FALSE (];
EncodeGenericClass(TB.DestProcess.GenericName) #>
[) ProtocolError(B); FALSE (];
TB.DestProcess. Incarnation # locallncarnation => FALSE;
END;

LengthError <-
L

!
!
!
!
!
'
]

Lengtn Errors result from discrepancies between the official
cont s2nt by MSG and actual data parsed. If the official
count is long then B.Scan will be less than B.Read. If it
is short B.Scan will be greater than B.R2ad, the parsing
routines advancing B.Scan past B.Read without reading.

%/ EXPR(B:NetBuffer; 300L) B.Scan # B.Read;

ProtocolError <-
1]

-~
.

ProtocolError arranges th2 sending of a PtclErr item based on the
NetBuffer passed to it.';

Abstract Model of M3G i 147
Module REMOTE

Protocol output routines

ProtocolOutput <-
'

! ProtocolOutput waits until it is SIGNALed, then loops through
! its delivery queue, removes entries and dispatches to the

! appropriate output routine. The entries are then dzqueued.
!

)

LY
EXPR(Ego:SarverHandle)
BEGIN
DECL B:NetBuffer LIKE AllocateNetBuffer();
DECL QEntry:TransactionHandle;
REPEAT
Seize(Ego.DeliveryQ);
Null(Ezo.DeliveryQ) =>
BEGIN
Ego.Running <- FALSE;
Release(Ezo.DeliveryQ);
WAIT({ Ego.WakeUpSignal });
Seize(Ezo.DeliveryQ);
END;
NOT Null(Ez2o.DeliveryQ) =>
BEGIN
QEntry <- Front(Ezo.DeliveryQl);
DECL IsSeized:BOOL LIKE TestS2ize(Q:Entry);
Release(Ezo.DeliveryQ);
NOT IsSeized =>
[) Pause(SeizeWait); Seize(Ezo.DeliveryQ) (J;
CASE[QEntry.ProtocolCommand]
("MESS"] => OQutputMess(QEntry, B);
["MESS-0X"] => QutputMessx(ZEntry, B);
[("MESS-REJ"] => QutputMessFej(QEntry, B);
["MESS-HOLD"] => Qutputlesstoli(IzZntry, B);
("HOLD-0L"] => QutputHoldCk(QEatry, B);
("MESS-CANCEL"] => QutputessCancal(QEntry, B);
{"XMIT"] => CQutputXmit(QEntry, B);
’ ("ALAR4"] => OutputAlarn(Jintry, B);
3 ("ALARM=0K"] => QutputAlaral«(QEntry, B):
- ["ALARM=REZJ"] => JutputAlarnRej(zntry, B);
("CONN-OPEN"] => Qutputloanlpen(QEatry, B);
k [("CONN=CLO3E"] => OutputConallos2(eEatry, B);
) ["CONN=REJ"] => OQutputConnRa2j(QEntry, B);
{"Start ICP"], {"Finish ICP"] =5
] NawHost(QEntry, B);
TRUE => MSGError('Sad protocol comnand');

END;
NOT (QEntry.ProtocolConmnand = "Start ICP" CR
QEntry.ProtocolComnand = "Finisnh ICP") =>
BEGIN

{1+ Header;

Abstract Model of MSG 148
Module REMOTE ,

\ Length <.- B.Scan;
DECL Hi:HostHandle LIKE SeizeHost(B.Host);
B.Chann21 <~ First(d4.Ciannels);
: | Release(Hd);
NetSend Itam(B);
Antry.Protocol Conmand <- NullProtocolCommand;
END;
Seize(Ezo.DeliveryQ);
DeQ(Ego.DeliveryQ, QFntry)

L. T TS T e

A oo s M e L e

Free(QEntry);
END;
Release(Ego.DeliveryQ); |
END; ’
END;

]
! The following routines convert internal data structurss to *
i ' protocol items and determine the target host. |

L]

’
OutputMess <-
]

! OutputMess, ia addition to th2 usual output functions: |
! converts the NoQwait field, |
! sets the FirstByte field, '
! and moves the messaze text fron th2 MessHandle to the
! NetBuffer (via OutputMessText).

]

]

*/
EXPR(M:MessHandle, B:NetBuffer SHARED)
BEGIN
M {1> MessFormat;
i Command <- '"MESS";
! NoQwWait <- NOT M.QWait; :
! FirstByte <- B.Scan; 5
B.Host <- M.DestProcess.Host;
OQutputMessText(B, MH); 4
END; :

h QutputMasslx <-
' EXPR(M:MessHandle, B:NetBuffer SHARED)
BEGIN
M 11> MessOkFormat;
i Command <~ "MESS-0X";
B.Host <= M,SourceProcess.Host;
END;

OutputMessRej <=~
EXPR(M:MassHandle, B:NztBuffer SHARED)
BEGIN 1
5 M 11> MassRajFormat;
i Comnand <- "4Z33-REJ"™;
B.Host <- M,SourceProcess.Host;
END;

Abstract Model of MSG
Module REMOTE

OQutputMessHold <-
EXPR(M:M2ssHandle, B:NetBuffer SHARED)
BEGIN
M } !> MessHoldFormat;
{ Command <- "MESS-HOLD";
B.Host <- M.SourceProcess.Host;
END;

OutputHoldOk <~
EXPR(M:¥2ssHandle, B:NetBuffer SHARED)
BEGIN
M }1> HoldkFormat;
! Command <- "HOLD-OX";
B.Host <- M.DastProcess.Host;
END;

OutputMessCancel <-
EXPR(M:MassHandle, B:NetBuffer SHARED)
BEGIN
M | 1> MessCancelFormat;
i Command <~ "MESS-CANCEL";
B.Host <- M.DestProcess.Host;
END;

OutputXmit <-
EXPR(M:MessHandle, B:NetBuffer SHARED)
BEGIN
11> XmitFormat;
\ Comnand <~ "XMIT";
B.Host <- M.SourceProcess.Host;
END;

QutputAlarm <-
EXPR(A:AlarmHandle, B:NetBuffer SHARED)
BEGIN
{ 1> AlarmFormat;
i Comnand <~ "ALARM";
B.Host <~ A.DestProcess.Host;
END;

OutputAlaraOxk <-
EXPR(A:AlarnHandle, B:N2tBuffer SHARED)
BEGIN
A }1> AlarmOkFornat;
\ Command <~ "ALARY-OK";
B.Host <- A.3ourceProcess.Host;
ZND;

OutputAlarnRzj <-
£XPR(A:AlarmHandle, B:NetBuffer 3HARED)
BEGIN
A 1> AlarnRejFormat;
i Conmand <~ "ALARM-REJ";
B.Host <= A.SourcaProcess.Host;
END;

143

Abstract Model of MSG
Module REMOTE

Qutput ConnOpen <-
]

! QutputConnlpan, in addition to the usual output functions:
! converts internal connection types to MSG ones.
!
' Ry
EXPR(C:ConnHandle, B:NetBuffer SHARED)
BEGIN

11> ConnOpenFormnat;
{ Type\duplex <-
C.ConnType = "Binary" AND C.ConnDirection = "InOut";
! Type\sand <~ C.ConnDirection = "Out";
| Type\receive <~ C.ConnDirection = "In";
! Type\ServerTELNET <~ C.ConnType = "ServerTELNET";
i\ Type\UserTELNET <~ C.ConnType = "UserTELNZIT";
} Command <- "CCNN-OPEN";
B.Host <- C.DestProcess.Host;
END;

OutputConnClose <-
EXPR(C:ConnHandle, B:NetBuffer SHARED)
BEGIN
1 1> ConnCloseFormat;
i Command <- "CONN-CLOSE";
B.Host <- C.DestProcess.Host;
END;

QutputConnRej <-
EXPR(C:ConnHandle, B:NetBuffer SHARED)
BEGIN
11> ConnRejFormat;
! Command <- "CONN-REJ";
B.Host <- C.DestProcess.Host;
END;

150

Abstract Model of MSG
Module REMOTE

L
!
!
!
!
.
!
!
!
!
!
!
!
!
!
!
!
!
i
!
!
!
!

ICP routines

Receive ICP request
OPEN ICP CHANNEL
GET HOST AND SOCKET FROM CHARNEZL HANDLE
AUTHENTICATE -- STOP IF FAILURE
GET LOCAL SOCKET FROM SYSTEY
SEND LOCAL SOCKET
CLOSE ICP CHANNZL
OPEN RE4OTE CHANNEL(S) ON LOCAL SOCKET
RECEIVE SYNCH
SEND SYNCH
KILL OLD TRAFFIC

Send ICP request
GET LOCAL SOCKET FROM SYSTEM
OPEN ICP CHANNEL ON LOCAL SOCKET -- STOP IF FAILURE
(HANDLE AUTHENTICATION)
RECEIVE RE4OTE SOCKET
CLOSE ICP CHANNEL
OPEN REMOTE CHANNZL(S) ON LOCAL SCOCKET
SEND SYNCH
RECEIVE SYCH
KILL OLD TRAFFIC';

ICPHandler <-
L}

! ICPHandler is the main routine of the ICP handling path. It
! waits until another entity initiates contact, verifiss that

! entity as an MSG, establishes the rencte and local sockats to
! be used in the permanent connection, creatss host and servers
! if nonaxistent, and notifies the natwork output server that a
3 connection should be opaned.

' R/
EXPR()
REPEAT
BEGIN
DECL ICPChannel:CarannelHandle LIKE
CHOPEN(MakeId(0, 0, ICPSockest), "Qut", "Binary", 32)
/% '"This blozks until someone connects.';
DECL RamoteHost:HostCode LIKE
GetHostFromChannel(ICPChannel);
DECL Renotelockat:Sockat LIKE
Get SocketFroanChannel(ICPChannel);
Authanticate(Ranotetost, Reaotelockat) #
CHCLOSE (ICPChannel);

Abstract Model of MSG ' 152
Module REMOTE

DECL LocalSocket:Sockat LIKE Assign¥3GSocket();
SEND(LoculSncket, ICPChannel);
' CHCLOSE(ICFChannel);
: DECL RemoteHandle:HostHandle LIKE
| SeizeHost(RemoteHost) ;
E | Null(RenoteHandle) ->
1 BEGIN
’ RemoteHandle <-
Allocate(HostHandle) /% 'implicit seize';
RemoteHandle.Host <- Remotehost;
| RemoteHandle.InputServer <-
AllocateNet Input 3erver(RemoteHost);
RemoteHandle.DeliverySarver <-
AllocateNetOutputServer (RemoteHost);
END; '
DECL FinisnContact:ContactHandle LIKE
Allocate(ContactHandle);
' FinishContact.RenoteHost <- RemoteHandle;
4 FinishContact.R2noteSockat <-
‘ RemoteSocket + 2 /* 'NewHost uses RemoteSocket as input socket';
FinishContact.localSockat <-
é LocalSocket - 2 /* '"NawHost uses LocalSocket+2 as input sockat';
E | y FinisnContact .ProtocolCommand <- "Finish ICP";
Deliver(FinisnContact, RamoteHandle);
Release(FinishContact);
Release(RenotzHandle);
END;
END;

b Laid

Authenticate <-
L]

! Authenticate verifies that th2 entity initiating an ICP is indeed an
! MSG. It checks that the remote sockat used in the ICP is a valid

! MSG socket by contactini tha remote MSG through its authentication
! socket and receiving the range or list of that MSGs sockets.';

2 ————

-~

e

. o

Abstract Model of MSG
Module REMOTE

SeizeHostHandle <-
’

LR ¥4

SeizeHostHandle is called from the user call server.

It not

only seizes the handle of the host code passed to it, but
also initiates contact with that host if it is unknown.

If the host is new the routine creates host and servers and
notifies the network output server that a connaction should

be opened.

EXPR(RemoteHost :HostCode; HostHandle)

BEGIN

DECL RemoteHandle:HostHandle LIKE SeizeHost(RemoteHost);

NOT Null(RemoteHandle) => RemoteHandle;
RemoteHandle <-

Allocate(HostHandle) /* 'implicit seize';
RemoteHandle.Host <- RemoteHost;
RemoteHandle. InputServer <-

AllocateNetInputServer(RamoteHost) ;
RemoteHandle.DeliveryServer <-

AllocateNa2tOutputServer(RemoteHost);

DECL StartContact:ContactHandle LIKE

Allocate(ContactHandle);
StartContact.RemoteHost <- RemoteHandle;
StartContact.ProtocolConmand <- "Start ICP";
Deliver(StartContact, RemoteHandle);
Release(StartContact);

RenoteHandle;

END;

153

TR PR e —

Abstract Model of MSG
Module REMOTE

SeizeHost <-

Seizellost finds (in HostS) and seizes the host handle of the
host code passed to it. If no handle is found, a null handle
is returned.

EXPR(HC:HostCode; HostHandle)
FOREACH HH IN HostS

DO HH.Host = HC => Seize(Hd); NullHostHandle END;

NewHost <~
L]

!
!
!
!
!
!
!
!
!
!
L

NewHost establishes a permanant connection with a remote MSG.
It is called from ProtocolQutput. If the desire for the
connection began locally an ICP requast is made on the remote
MSG. The input and output connections are opened and
inserted in tne proper channsl sets, syacnronization
information is exchanged, transactions addressed to a prior
incarnation of tha remote MSG are cancelled, and the input
server is signalled that a new connection exists. If the
connactions cannot be opened, HostDead action is performed.

EXPR(Contact:ContactHandle, B:NetBuffer)
BEGIN

Contazt.ProtocolCannand = "Start ICP" ->
RequzstICP(Contact);
Null(RemoteSocket) => HostDied(Contact);
DECL InputChannel:ChannelHandle LIKE
CHOPEN(MakeId(Contact.Remotetbst.Host,
Contact.Ramnot=Sockat + 1,
Contact.localSocket + 2), "In", "Binary",
8); :
Null(InputChannel) => HostDied(Contact);
DECL QutputChannzl:Chann2lHandle LIKE
CHOP=N(MakeId(Contact.Remotehost.Host,
Contact.RemoteSockat,
Contact.localSocket + 3), "out",
"Binary", 3);
Null(OutputCaannel) =>
[) CHCLOSE(InputChannzl); HostDied(Contact) (J;
DECL RemoteHost:HostHandle LIKE
Seize(Contact,.RanoteHost);
Insert{RenoteHost. ConnectionS, OutputChannel);
DECL InputServer:ServerHandle LIKE
Seize(Renot2Host. InputServer);
Insasrt(InputServer.Channal3, InputChannel);
Release(InputServer);
Relecasa(RanoteHost);
Synchroni ze(Contazt, B);
DECL Q:Quzuz2(Transactiondandle) LIKE
Remotatbst.DeliveryServer.DeliveryQ;
S2ize(Q);
FOREACH T IN Q
DO

154

T e e S S T2 T O POy T e Y A 8 Nt O AR

Abstract Model of MSG . 155
Module REMOTE

DECL D:ProcessName LIKE RemoteDest(T);
D.Host = RamoteHost.Host AND
, D.Incarnation # RemoteHost.Incarnation ->
E | REPEAT
DECL Success:BOOL LIKE
BEGIN
TestSeize(T) => HostDeadTransaction(T);
FALSE;
END;
Success => NOTHING;
Release(Q);
Pause(SeizaWait);
Seize(Q);
END;
END;
Release(Q);
SIGNAL(InputServer.WakeUpSignal);
END;

RequestICP <-
'

RequestICP, called from NawHost, establishes th2 local and
remote sockets to be used in a network connection with a
renote host in response to th= desire of a user to contact

a process on that host. The remote socket is obtained from
the ICP handler of the host. If the host is down th2 remote
socket is left null.

%/ 1
EXPR(StartContact:ContactHandle)
BEGIN
StartContact.localSockat <- AssiznMSGSockst();
DECL ICPChannel:ChannelHandle LIKE
CHOPEN(MakeId(StartContact.RamoteHost .Host, ICPSocket,
StartContact.Local Socket), "In",
"Binary", 32);
Null(ICPChannel) => NOTHING;
'AuthenticationHandler is consulted now by remote MSG';
Abnormal (RECEIVE(StartContact.RenotaSocket, ICPChannel)) =>
NOTHING;
CHCLOSE (ICPChannel);
END;

HostDied <-
'
HostDied clzans up when a ramot2 host provas uarz2achabla. The 3

!

! local sockst assizned to tha aborted conn2ction is frazd and,
! if there ar2 no otner paths to thes host, traasactions
!

!

]

addressed to it are cancelled.

®/
EXPR(C:ContactHandle)
BEGIN
Deassign4sSGSocket(C.Local Socket) ;
NOT Null(C.Rznotelost.Channzls) => NOTHING;
DECL Q:Queue(TransactionHandle) LIKE
C.R2motetiost .DeliveryServer.DeliveryQ;
Seize(Q);
FOREACH T IN Q
o i i i

Abstract Model of MSG
Module REMOTE

DO
RemoteDest(T) .Host = C.RemoteHost.Host ->
REPEAT
DECL Success:BOOL LIKE
BEGIN
TestSeize(T) => HostDeadTransaction(T);
FALSE;
END;
Success => NOTHING;
Release(Q);
Pause(SaizeWait);
Seize(Q);
END;
END;
Release(Q);
END; '

RemoteDest <-
RemoteDest returns the process name of the process to which

the given transaction is addressed. The name contains the
host and incarnation number.

- VD ‘e Ve e -

&/
EXPR(T:TransactionHandle; ProcessName)
CASE(T.ProtocolConmand]
["MESS-0K"],
["MESS-REJ"],
{"MESS-HOLD"],
["YMIT"] y
["ALARM-OK"],
[("ALARM-REJ"] => T.SourcaProcess;
TRUE => T.DestProcess;
END;

Synchroni ze <-
1]

! Synchronize exchanges SYNCH infornation with the remote MSG, using the
! channals openad by NewHost. The incarnation number of the remote nost
! is obtained and stored in its host handle.';

AutnenticationHandler <-
L}

! AuthenticationHandler sends out MSG socket verification
! information in response to raquests for it. Such regussts
! are stimnulated by RequastICP.
]
' '/
EXPR()
REPEAT

DECL AuthenticationChannel:ChannelHandle LIKE

CHOPEN(Mak=1d(0, 0, AuthanticationSocket), "OQut",
"Binary", 32);

Null(AuthenticationCianazl) 2>
MSGError('Authantication CHOPEN failed');

Abnormnal (SEND(M3GSockatRanze, AuthenticationChannal)) =>
MSGError('Autheatication SZND failed');

CHCLOSE (AuthznticationChannel);

[Belady]

[Manual]

[Spec]

Abstract

Model of MSG 157

REFERENCES

Belady, L. A., and M. M. Lehman. "A model of large
program development," IBM Systems Jl, vol. 15,
no. 3, pp. 225-252, 1976.

ECL programmer's manual. Technical report TR
23-T4, Ctr. for Res. in Computing Technology,
Harvard Univ., December 1974,

MSG desizgzn specification, in "Third semi-annual
technical report for the National Software Works."
Massachusetts Computer Associates, Wakefield,
Mass., February 1977.

A
Abstraci Model of MSG 158
Index To Model Entities
Ela L e e el s nl e e e 20
<== . o) . . .) . . us
<::= . . Ll L] . L] . L] L] . L] . L] 21
==> L L] * L] L] . L] ® . L] L] . . 20
B s A S e e e e
AbortMess [QUEUE] 92
AcceptAlarm [QUZUE] 103
AcceptAlarms [PROCESS] 62
AcceptHoldOrRe jectMess [QUEUE] 834
AcceptMess [QUEZUE] 87
AcceptOutputMess [QUZUE] . . . 89
AlarmBlock [(GLOBAL] 54
AlarmCode [GLOBAL] . . Ao o B
AlarmFormat [REMOTE) 136
i " AlarmHandle [GLOBAL] 54
f AlarmOkFormat [REMOTE] 136
| AlarmRe jFormat [REMOTE] « %136
Allocate . . = e 18
AnswerBelatedItem {QU U?] . . 96
Authenticate [REMOTE] 152
AuthenticationHandler . . . 42
AuthenticationHandler [REWOTE] 156
CancelMess [QUZUE] . . 87 ’
ChangeProtocolOutput [CANCEL] 130
Chann=1Block [GLOBAL]) 53
ChannelHandle [GLOBAL] . GG]
CHELOSE. o ''w & o @ o ol e e e 20
\ CHOPEN . . 5w e e e e 20
CHOPEN [GLOBAL] o s 156
CloseConnection [PROCES:] % et ol
CloseFormat [REMOTE] . . . s 138
CommitBuffer [QUEUZ] . . . 98
CompatibleConnactionTyp2s [QUEUE] 103
ConnBlock [GLOBALJ] 54
ConnClosaFormat [RE WQTL] ottt g
ConnDirectionCode [GLCBAL) . . 52
ConnHandle [GLOBAL] 54
ConnIDCode [GLOBAL] R T RS
ConnQOpenFormat [REMOTE] . . . 135
ConnRejFormat [REMOTE] 137
ConnTypaCode [(GLOBAL] 52
ContactBlock [GLOBAL] . « » « 53
ContactHandle (GLOBAL]) . . +» « 53 ;
ConvertTimer LLOCAL] v s + » » 19 i
CreditBaffer [QUEUE] +« o o » » 97

DebitBuffer [QUEUE] 97 i

DecodeGenericClass [QUEUE] .
Deliver [QUEUE] . . T
DeliverCancel [C\VCEL] e
DeliverToRemoteHost [QUEUE]

DeliveryServerBlock [GLOBAL]
DeQ . . Sl o
DestHandle [GLOBAL] .
DoAcceptAlarms [LOCAL]
DoRescind [LOCAL] . .
DoResynch [LOCAL] . .
DoStopMe [LOCAL] . . .
DoWwhoAmI [LOCAL] . . .

e e o e o =
e o o o o o o

e o o o o o

EchoFormat [REMOTE]
EchoReplyFormat [REMOTZ] . .
EncodeGenericName [QUEUE] .
EndBrokenConnection [LOCAL]
EndCloseConnaction [LOCAL] .
EndOpenConnection [LOCAL] .
EndOpTable [LOCALY . .« & »
EndReceiveAlarm [LOCAL] .
EndReceiveMessaze [LOCAL] .
EndSend Alarm ([LOCAL]
EndSendMessage [LOCAL] . . .
EndTerminationSianal [LOCAL]
EaiQi T s
EnQHostSpecxflvMess [QUWU]
EnQInputAlarm {QUZUE]) . .
EnQInputCloseConn [QUEUEZ]
EnQInputMess [QUZUE] . .
EnQInputOpenConn [QUEUE]
EnQNewInputMess [QUEUE]
EnQOldInputMess [QUZUE]
EnQOutputAlarm [QUIUE] .
EnQOutputClosaeConn [QUEUZ]
EnQQutputMess [QUzZUE] . .
EnQOutputOpenConn [QUEUE]
EnQRaceiveAlarm [QUEUE]
EnQReceiveMess [QUZUE] .
Enumeration . L%,
ExpFormat [REWOT”] R

FORMAT . .

FormatError [REdOTE]
PREE & 3 v e v e G
| 3o g 1 - R S SR R TR

GenericBlock [GLOBAL] . . .
GenericClass [REMOTE] . . .
GenericClassCode [GLOBAL] .
GenericHandle [GLOBAL]) . . .
GaenericTable [GLOBAL] . . .
GetNewGanericHost [QUEUE] .

Handlin3Code [(GLOBAL] . . .
HAS . . "

e o o ¢ e o o e o o o

@ e e e & e e o e o 2 e o o o o o

116
115
131
115
53
49
54
73
73
73
13
73

137
137
116
72
71
70
66
70
68
59
68
72
43
e
101
113
82
107
82
83
100
1190
78
105
100
80
48
137

43
146
18
49

53
135
52
53
99
73

52
48

HasPendxngProtocolOatput [CnVCELJ
134

Header [REMOTE] .« ¢« ¢ « &+ &

130

HoldOkFormat [REMOTE] .
HoldOr RejectMess [QUEUE]
HostBlock [GLOBAL] . . .
HostCode [GLOBAL] . . .
HostDeadTransaction . .
HostDead Transaction [CANC
HostDied (REMOTE] . . .
HostHandle [GLOBAL] . .
HostS [GLOBAL]«

L

e o o [Tle o o o o
® o o e o e o o
L] L] . L] L] L] . Ll L]

ICPHandler . .
ICPHandler [REWOTE]
InitiateMSG [DRIVER]
InputAlarm [REMOTE]
InputAlarmOk [REMOTE]
InputAlarmRej (REMOTE]
InputCoanClose (REMOTE]
InputConnOpen [REMOTE] .
InputConnRej [REMOTE] .
InputHoldOk [REMOTE] . .
InputiMess [REMOTE] . . .
InputMessCancal [REMOTE]
InputMassHold [REMOTE] .
InputMessOx [REMOTE] . .
InputMessRej [REMOTE] .
InputServerBlock [GLOBAL]
InputXmit (REMOTE] <« + + s
Y S e o e SR i
ISEUllQE o o
IsLocalTransactxon [CANCEL] ‘
IsPassiveTransaction [CANCEL]

e, 8 o o
e o o o e o
@ o o o & o ¢ o o o o o o e o

e e & o o o e ¢ e o o o e © o o o o o
e e ©® o ° 6 & e o e © e e o s o o e o

LengthError [REMOTE] .
LocalCancel . c
LocalCancel [CANC’L] .
LocalXMIT (QUEUE] . .
LookupProcessHandle [QU
LookupTransaction [QUEU

e o o o
e o o o o o

UEUE]
UE]

MakeId [GLOBAL]
MatchingConn [QUEUE] . .
MatchinzProcessNanes [QUEU
MergeAlarmHandles [QUEUE]
MergeConnHandles [QUZIUE] .
MergeMessHandles [QUEUE] .
MergeOpenIntoCloss [QUEUE]
MessBlock [GLOBALJ] . . "
MessCancelFormat [RanTE]
MessFormat [REMOTEZ] . . .
MessHandle [GLOB3AL] . . .
MessHoldFormat [REMOTE] . .

e o o o o o L_J. .

MessMismatch [QUZUE] . .
MessOxFormat [REMOTEZ] .
MessRajFormat [REYOTE] . . .
MSGChannel ([PROCES3] . . “
MSGProcessName [REMOTE] . . .

NetBuffer [REMOTE] . « « « .«

135
85
83
52
39
125
155
53
55

42

151
58

143
143
144
145
144
146
142
141
142
142
142
142
53

143
49

49

130
130

146
39
128
81
17
4 i

57

114
116
102
106
86

112

135
1354

135

135
135

139
139

————

NetReceiveItem [REMOTE] . . . 139 f

NetSendItem [REMOTE] 139 J
NewHost . PR DR M SO j

NewHost [REiOTE] LT IR |

NoOpFormat [REMOTE] 137 |

:

OpCode [LOCAL] . . 2 % -« 80 :

OpenConnection [PROCESS] s & « 81 |

OpTable [LOCAL] « & o » » « « 66 %

Originator [LOCAL] « « « « « « T8 |

OQutputAlarm (REMOTE] 149 j

OutputAlarmOk [REMOTE] 149 |

OutputAlarmRej [REMOTE] . . . 149 |

QutputConnClose [REMOTE] . . . 150

OutputConnOpen [REMOTE] . . . 150

OutputConnRej [REMOTE] 150

OutputHoldOk [REMOTE] 149

QutputMess [REMOTE] . . . « . 148

OQutputMessCancel [REMOTZ] . . 149

OutputMessHold [REMOTE] . . . 149

OQutputMessOk [REMOTE] 148

OQutputMessRej [REMOTE] 148 |

OutputXmit [REMOTE] 149 |

OwningProcess [CANCEL] 130 |

PCall [PROCESS] . & o o = « « B3 :

Podnter . . « « & & w4 s » « 98 |

ProcessBlock [GLOBAL] 53 |

ProcassHandle [GLOBAL] 53 :

ProcessName [GLOBAL] 53 |

ProcessTable [GLOBAL] 55

ProtocolCode [GLOBAL] 52

ProtocolError [REMOTE] 146

ProtocolInput [REMOTZ] 140

ProtocolQutput [REMOTE] . . . 147

PteclErrFormat [REMOTE] . « . « 138

QUEeUe « « v v e v ow o e e B9

ReasonCode [GLOBAL] 52

REGCELVE . B e i e AT)

RECEIVE [GLOBAL] P R R -

ReceiveAlarm [PROCESS] 61

ReceiveGenericMessaze [PROCES3] 60

ReceiveSpecificMessagze [PROCESS] 50

RecordALARM\REJ [QUEUE] . . . 102

Record ALARM\OKX [QUEUE] 102

RecordCONN\REJ [QUEUE] 114

RecordHOLD\OX ([QUEUE] 94

RecordMESS\CANCEL (QUEUE] . . 95

RecordMESS\HOLD [QUEUE] « » » 93

RecordMESS\REJ ([QUEUE] 88

RecordMES3S\0K [Qu UE] & o » B3

RecordXMIT [QUEUEZ] + .« 96

RejectAlarm [QUEUE] .+ o « « o« 103

RejectConn [QUEUE] « « « « « « 112

RejectMess [QUEUE] 87

RejectOutputConn [QUEUE] . . . 112

" SeizeTraansaction [QUEUE] .

RejectOutputMess [QUEUE]
Release . A
RemitBuffer [QU?UE] .
RemoteCancel . .
RemoteCancel [CANCEL]
RemoteDest [REMOTE] .
Remove . . .
ReplaceTransactlonHandle
RequestICP . . 4
Request ICP [RE%OT?] <
RequestTransmission [QUFUE]
Rescind [PROCESS] . . 5
RescindLocalEvent [CANCELJ .
RescindPendingEvent .
RescindPendinzEvent [CANCEL]
Resynch [PROCESS] . . .
ReverseConnHandle [QUCUE] .

e e @ e s o

e ™o o o o o o o

0
o o Ce o o o o o o
m
e ® & o o o o s 6 e o o o e o o

Selze o . 3
SeizeDestHandle [QUEUF] "
SeizeHost [REMOTE]
SeizeHostHandle [REMOTE] . .

91
18
93
29
129
156

153

Se-.zeMatchingReceiveMess [QUEUE]

SeizeProcessHandle [QUREUE] . .

SEND . . . o e tad el e
SEND [GLOBAL] o
SendAlarm [PROCESS]
SendALARM [QUEUE] .
Send ALARM\REJ [QUZUE]
SendALARM\OK (QUEUEZ] .
SendCloseConn [QUEUE] .
SendGenericMessaze [PROCE
SendHostSpecificMess [QUE
SendMESS [QUEUE]
SendMESS\HOLD ([QUEUE] .
SendMESS\CANCEL [QUEUE]
SendMESS\REJ [QUEUE] . .
SendMESS\OK [QUEUE] . .
SendOpenConn [QUZUE] . .
SendSpecificMessage [PROCES
SendStatusFormat [REMOTE] .
SendXMIT (QUEUZ]
Sequaence . . .
ServerHandle [GLOBAL] >
ServerTable [GLOBAL]

el S % A~
Shortint [”’DBAL] 0w
SIONAL ¢ & « Tl B
StartCloseConnection (LOCAL]
StartGanericProcess [LOCAL]
StartOpenConnection [(LOCAL]
StartReceivaAlarm [LOCAL]) . .
StartRaceiveMessage [LOCAL] .
StartSsndalarm [LOCALL ¢ & =
StartSendMessage (LOCAL] . .
StartTerminationSignal [LOCAL]
StartTiaiag .+ ¢« ¢ o o 4 & & &

S5
E

e o o o o o C e o o o o o o
e e o o o o o o o o ° o o o o o

(e o ¢ o o o LauL e o o o o o o o

—
e o e o

17
117
20
56
61
104
104
104
109
59
79
99
99
99
99
99
109
590
1383
99
48
53
55
439
52
19
7
75
79
59
63
59
67
T4
40

86

StartTiming [CANCEL] . . .
StateCode [GLOBAL) . . . o
StatusOkFormat [REMOTE] .
StatusRejFormat [REMOTE] .
StoplocalTransaction [CANCE
StopMe [PROCESS] . .
StopProtocolOutput [CANCEL]
StopTiming . . 5o
StopTiming [CANCEL] e
StopTransaction .
StopTransaction [CANCEL]
String ([(GLOBAL]
StrinzPtr {GLOBAL] . . .
SynchFormat [REMOTE] . .
Synchronize [REMOTE] .

e [T e o o o

e e o o o o o
e o o o o © o o

TermBlock [GLOBAL] . . « . .
TermHandle [GLO3AL] . .

TerminationSiznal [PROC*SS]
TestSeize . ¢ W s e e e e
TimeoutHandler . . . e P
TimeoutHandler [CANCEL] ik

132
5e
138
138
124
62
131
40
132
39
124
52
52
138
156

54
54
62
18
40

133

TimeoutLocal Transaction [CANCEL] 127

TimeoutTransaction
Timeout Transaction [CANCEL]
TimerDefaults [LOCAL] . .
TimerQ [GLOBAL]
TransactionHandle [uLOBAL]
TransactionID [GLOBALJ] . .
TransactionTable [GLOBAL]

e o o o o

Union . O
UserCallServer [LOCAL] &
UserDeliveryServer [LOCAL]
UserHandle [GLOBAL] . . .

ValidXMITResponse [QUEUE] .
Value . . o
VlrtualFrueSpace [QUEUE] A

WALT . . & e s e
WhOA'nI [PROCE-)S]

XmitFormat [REMOTE]

39
126
66
55
54
52
55

u8
T4
74
54

83
43
98

19
62

135
45
45
45

